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Appendix A: Simple Model (Analytical Results)

A.1. Root Analysis

We �rst show that 0 < ρ < 1 < |ω1| ≤ |ω2|. Since P(0) = −1/β−χy/(βσχi) < 0 and P(1) = κ/(βσχi) >
0, P(X) has either one or three real roots inside (0, 1). Moreover, since P(X) < 0 for all X < 0, P(X)
has no negative real roots. Therefore, P(X) has at least one real root inside (0, 1), which we denote by ρ,
and its other two roots, which we denote by ω1 and ω2 with |ω1| ≤ |ω2|, must be (i) both real and inside
(0, 1), or (ii) both real and larger than 1, or (iii) both complex and conjugates of each other. Now, given
that P(X) is of type X3− a2X2 + a1X − a0, we have ρ+ω1 +ω2 = a2 ≡ 2 + 1/β + κ/(βσ) +χy/(σχi) > 3.
Therefore, Case (i) is impossible, and in Case (iii) the common real part of ω1 and ω2 is larger than 1. As a
consequence, in the remaining two possible cases, namely Cases (ii) and (iii), ω1 and ω2 lie outside the unit
circle.

We now show that ω1 and ω2 can be real numbers, and that they can also be complex (non-real) numbers.
Suppose, for instance, that χy and χi go to 0, with χy/χi constant. Then, a1 ≡ 1+2/β+(1+1/χi)κ/(βσ)+
(1 + 1/β)χy/(σχi) goes to +∞, while a2 ≡ 2 + 1/β + κ/(βσ) +χy/(σχi) and a0 ≡ 1/β +χy/(βσχi) remain
constant. Therefore, for su�ciently small values of χy and χi, P(X) = X3−a2X2 +a1X−a0 is positive for
all X ≥ 1, so that Case (ii) is impossible and ω1 and ω2 are complex numbers. By contrast, suppose now
that χy and χi go to +∞, with χy/χi constant. Then, P[1+χy/(σχi)] goes to −[1+χy/(σχi)]κχy/(βσ

2χi),
which is negative. Therefore, for su�ciently large values of χy and χi, we have P[1 + χy/(σχi)] < 0, which,
together with P(1) > 0, implies that ω1 and ω2 are positive real numbers.

A.2. Resolution of the Paradox of Flexibility

Using the de�nition of Zt, and after some simple algebra, we can rewrite (10) and (11) as

πt = − (1− ρ) pt−1 +
κ

β (ω2 − ω1)
Et

{
− 1

σ

+∞∑
k=0

(
ω−k−11 − ω−k−12

)(
i∗t+k − rt+k −

Mt+k

χi

)

−
+∞∑
k=0

(
ξg1ω

−k−1
1 − ξg2ω

−k−1
2

)
gt+k +

+∞∑
k=0

(
ξϕ1 ω

−k−1
1 − ξϕ2 ω

−k−1
2

)
δϕϕt+k

}
, (A.1)

yt = −ϑpt−1 + gt +
Et

β (ω2 − ω1)

{
1

σ

+∞∑
k=0

(
ξ1ω
−k−1
1 − ξ2ω−k−12

)(
i∗t+k − rt+k −

Mt+k

χi
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+
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k=0

(
ξ1ξ

g
1ω
−k−1
1 − ξ2ξg2ω

−k−1
2

)
gt+k −
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ϕ
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−k−1
1 − ξ2ξϕ2 ω

−k−1
2

)
ϕt+k

}
, (A.2)
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where ϑ ≡ (1− ρ)(1− βρ)/κ and

ξj ≡ β (ωj + ρ− 1)− 1,

ξgj ≡ (1− δg) (ωj − 1) +
δgχy
σχi

,

ξϕj ≡ δϕ (ωj − 1)− δϕχy
σχi

for j ∈ {1, 2}.
The only parameter that depends on the degree of price stickiness θ in the structural equations (1), (2),

and (7) is the slope κ of the Phillips curve (2). We have limθ→0 κ = +∞ and therefore

−βσ lim
θ→0

[
P (X)

κ

]
= X (X − ωn1 )

for any X ∈ R, where ωn1 ≡ (1 + χi)/χi > 1, which implies in turn that

lim
θ→0

ρ = 0, lim
θ→0

ω1 = ωn1 , and lim
θ→0

ω2 = +∞. (A.3)

Using (A.3) and

(1− ρ) (ω1 − 1) (ω2 − 1) = P (1) =
κ

βσχi
,

we also get that

lim
θ→0

κ

ω2
= βσ. (A.4)

Using (A.3) and (A.4), we can easily determine the limits of (A.1) and (A.2) as θ → 0:

lim
θ→0

πt = −pt−1 − Et

{
+∞∑
k=0

(ωn1 )
−k−1

{
i∗t+k − rt+k −

Mt+k

χi
+

[
σ (1− δg) + χyδg

χi

]
gt+k

+

[
(χy − σ) δϕ

χi

]
ϕt+k

}}
+ σ (1− δg) gt − σδϕϕt, (A.5)

lim
θ→0

yt = δggt + δϕϕt. (A.6)

These limits are �nite, unlike their counterparts in the basic NK model.
We now show that the right-hand sides of (A.5) and (A.6) coincide with the values taken by πt and yt

when prices are perfectly �exible (θ = 0). The �exible-price value of yt is straightforwardly obtained by
setting to zero the last term in the Phillips curve (2), which is proportional to (the log-deviation of) �rms'
marginal cost of production:

yt = δggt + δϕϕt. (A.7)

This value is identical to the right-hand side of (A.6). Using the IS equation (1), the money-demand equation
(7), the identity mt = Mt − pt, the exogenous policy-rate setting imt = i∗t , and the solution for �exible-price
output (A.7), we get the following dynamic equation under �exible prices:

pt = (ωn1 )
−1 Et {pt+1} − (ωn1 )

−1
{
i∗t − rt −

Mt

χi
−
[
σ (1− δg)−

χyδg
χi

]
gt

+σ (1− δg)Et {gt+1}+

(
σ +

χy
χi

)
δϕϕt − σδϕEt {ϕt+1}

}
.

Iterating this equation forward to +∞ leads to the following value for the price level pt in our simple model
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under �exible prices:

pt = −Et

{
+∞∑
k=0

(ωn1 )
−k−1

{
i∗t+k − rt+k −

Mt+k

χi
+

[
σ (1− δg) + χyδg

χi

]
gt+k

+

[
(χy − σ) δϕ

χi

]
ϕt+k

}}
+ σ (1− δg) gt − σδϕϕt,

which implies in turn that the value of πt ≡ pt − pt−1 in our simple model under �exible prices coincides
with the right-hand side of (A.5). Thus, our simple model solves the paradox of �exibility: the limits of πt
and yt as θ → 0 are �nite and coincide with the values of πt and yt when θ = 0.

A.3. E�ects of Greater Price Flexibility

We measure the degree of price �exibility by the reduced-form parameter κ (which is inversely related
to the degree of price stickiness θ). We show that: (i) ∂2πt/∂κ∂rt+k > 0 for k ≥ 0 in both our selected
equilibrium and the standard equilibrium of the basic NK model; and (ii) ∂2yt/∂κ∂rt+k < 0 for k ≥ 0 in our
selected equilibrium, while ∂2yt/∂κ∂rt = 0 and ∂2yt/∂κ∂rt+k > 0 for k ≥ 1 in the standard equilibrium.

We start with (i). In our selected equilibrium, we have ∂πt/∂rt+k = (1 − ρb)(1 − ω−k−1b ). Using

ωb = [1 + β + κ/σ +
√

(1 + β + κ/σ)2 − 4β]/(2β), we get ∂ωb/∂κ > 0. In turn, using this result and
ρbωb = 1/β, we get ∂ρb/∂κ < 0. We conclude that ∂2πt/∂κ∂rt+k > 0. In the standard equilibrium, now,
we have

∂πt
∂rt+k

=
κ
(
ρ−k−1b − ω−k−1b

)
βσ (ωb − ρb)

=
βkκ

σ

(
ωk+1
b − ρk+1

b

ωb − ρb

)
=
βkκ

σ

k∑
j=0

ωk−jb ρjb =
βkκ

σ

k∑
j=0

β−jωk−2jb ,

where the second and fourth equalities follow from ρbωb = 1/β. For k = 0, thus, we straightforwardly get

∂2πt/∂κ∂rt = 1/σ > 0. For k ≥ 1, we introduce the function x 7→ fk(x) ≡
∑k
j=0 β

−jxk−2j , and we write

∂πt/∂rt+k = βkκfk(ωb)/σ. The �rst derivative of fk(x) is

f ′k (x) =
1

x

k∑
j=0

(k − 2j)β−jxk−2j =
1

x

b(k−1)/2c∑
j=0

(k − 2j)β−j

[
xk−2j − 1

(βx)
k−2j

]
,

where b.c denotes the �oor operator. Using ρbωb = 1/β, we then get

f ′k (ωb) =
1

ωb

b(k−1)/2c∑
j=0

(k − 2j)β−j
(
ωk−2jb − ρk−2jb

)
> 0.

So, we have
∂2πt

∂κ∂rt+k
=
βk

σ

[
fk (ωb) + κf ′k (ωb)

∂ωb
∂κ

]
> 0.

We now turn to (ii). In our selected equilibrium, we have

∂yt
∂rt+k

=
ρb
σ

[
1 + β (1− ρb)ω−kb

]
=

1

σ

(
ρb + βk+1ρk+1

b − βk+1ρk+2
b

)
,
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where the second equality follows from ρbωb = 1/β. Therefore, we get

∂2yt
∂κ∂rt+k

=
1

σ

[
1 + (k + 1)βk+1ρkb − (k + 2)βk+1ρk+1

b

] ∂ρb
∂κ

=
1

σ

[(
1− βk+1ρk+1

b

)
+ (k + 1)βk+1ρkb (1− ρb)

] ∂ρb
∂κ

< 0.

In the standard equilibrium, we have

∂yt
∂rt+k

=
κ

βσ2 (ωb − ρb)

(
ρ−kb

1− ρb
+

ω−kb
ωb − 1

)
=

1

σ (ωb − ρb)
[
(ωb − 1) ρ−kb + (1− ρb)ω−kb

]
=

βk

σ

[
(ωb − 1)

(
ωkb − ρkb
ωb − ρb

)
+ ρkb

]
,

where the second equality follows from ρb +ωb = 1 + 1/β + κ/(βσ) and ρbωb = 1/β, and the third one from
ρbωb = 1/β. For k = 0, we straightforwardly get ∂yt/∂rt = 1/σ and hence ∂2yt/∂κ∂rt = 0. For k = 1,
we get ∂yt/∂rt+1 = (β/σ)(ρb + ωb − 1) = (1/σ)(1 + κ/σ) and hence ∂2yt/∂κ∂rt+1 = σ−2 > 0. Finally, for
k ≥ 2, we get

∂yt
∂rt+k

=
βk

σ

[
(ωb − 1) fk−1 (ωb) + ρkb

]
=
βk

σ

[
(ωb − 1) fk−1 (ωb) + β−kω−kb

]
,

where the function fk−1(.) is de�ned above and where the second equality follows from ρbωb = 1/β. So,

∂2yt
∂κ∂rt+k

=
βk

σ

[
fk−1 (ωb) + (ωb − 1) f ′k−1 (ωb)− kβ−kω−k−1b

] ∂ωb
∂κ

=
βk

σ

(ωb − 1) f ′k−1 (ωb) +
1

ωb

k−1∑
j=0

ωk−jb ρjb − kρ
k
b

 ∂ωb
∂κ

> 0,

where the second equality follows from ρbωb = 1/β.

Appendix B: MIU Model (Presentation and Log-Linearization)

In this appendix (and the following ones), to lighten up the notation, we sometimes omit function
arguments when no ambiguity results.

B.1. Households

Households get utility from consumption (ct) and real money (mt), and disutility from labor (ht). Their
intertemporal utility is

Ut = Et

{ ∞∑
k=0

βkζt+k

[
u (ct+k,mt+k)− v (ht+k)

ϕ1,t+k

]}
,

where β ∈ (0, 1). The utility function u, de�ned over the set of pairs of positive real numbers R2
>0, is twice

di�erentiable, strictly increasing (uc > 0, um > 0), strictly concave (ucc < 0, umm < 0, uccumm − (ucm)
2
>

0), with ucm ≥ 0, and it satis�es the standard Inada conditions

limct→0 uc (ct,mt) = +∞, limct→+∞ uc (ct,mt) = 0,
limmt→0 um (ct,mt) = +∞, limmt→+∞ um (ct,mt) = 0.
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The labor-disutility function v, de�ned over the set of non-negative real numbers R≥0, is twice di�erentiable,
strictly increasing (v′ > 0), and weakly convex (v′′ ≥ 0). The intertemporal utility Ut is a�ected by two
stochastic exogenous shocks of mean one: the discount-factor shock ζt, and the labor-disutility shock ϕ1,t.
The latter shock is the �rst of the four alternative supply shocks that we consider.

Households choose ct, ht, mt, and real bonds bt to maximize their utility function subject to their budget
constraint

ct + bt +mt ≤
It−1
Πt

bt−1 +
Imt−1
Πt

mt−1 + wtht + τt, (B.1)

where It denotes the gross nominal interest rate on bonds, Imt the gross nominal interest rate on money,
Πt ≡ Pt/Pt−1 the gross in�ation rate (with Pt the price level), wt the real wage, and τt captures �rm pro�ts
and the government's lump-sum taxes or transfers. Let λt denote the Lagrange multiplier on the period-t
budget constraint. The �rst-order conditions of this maximization problem are

λt = ζtuc (ct,mt) , (B.2)

1

It
= βEt

{
λt+1

λtΠt+1

}
, (B.3)

λtwt =
ζtv
′ (ht)

ϕ1,t
, (B.4)

ζtum (ct,mt) = λt − βImt Et
{
λt+1

Πt+1

}
.

Using (B.2) and (B.3), we can rewrite the last condition as

Imt
It

= 1− um (ct,mt)

uc (ct,mt)
. (B.5)

B.2. Firms

There is a continuum of monopolistically competitive �rms owned by households and indexed by i ∈ [0, 1].
Each �rm i uses ht(i) units of labor to produce

yt (i) = ϕ2,tf [ht (i)] (B.6)

units of output. The production function f , de�ned over R≥0, is twice di�erentiable, strictly increasing
(f ′ > 0), weakly concave (f ′′ ≤ 0), and such that f(0) = 0. The stochastic exogenous technology shock
ϕ2,t, of mean one, is the second of the four alternative supply shocks that we consider. The third supply
shock that we consider, ϕ3,t, also of mean one, captures a labor subsidy received by �rms (when ϕ3,t > 1)
or labor tax paid by �rms (when ϕ3,t < 1): if Wt denotes the pre-subsidy or pre-tax nominal wage, then the
after-subsidy or after-tax nominal wage paid by �rms is Wt/ϕ3,t.

Following Calvo (1983), we assume that at any date, each �rm, whatever its history, has the probability
θ ∈ [0, 1) not to be allowed to reset its price. If allowed to reset its price at date t, �rm i chooses its new
price P ∗t (i) to maximize the present value of the pro�ts that this price will generate:

Et

{
+∞∑
k=0

(βθ)
k λt+k
λtΠt,t+k

[
P ∗t (i) yt+k (i)− Wt+kht+k (i)

ϕ3,t+k

]}
,

subject to the production function (B.6) and the demand schedule

yt+k (i) =

[
P ∗t (i)

Pt+k

]−εϕ4,t+k

yt+k, (B.7)

where Πt,t+k ≡ Pt+k/Pt for any k ∈ N, ε > 0 denotes the steady-state elasticity of substitution between
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di�erentiated goods, and yt ≡ [
∫ 1

0
yt(i)

(εϕ4,t−1)/(εϕ4,t)di]εϕ4,t/(εϕ4,t−1). The stochastic exogenous shock ϕ4,t,
of mean one, a�ecting the elasticity of substitution between di�erentiated goods, is the last of the four
alternative supply shocks that we consider.

Using (B.6), we can rewrite the present value of the pro�ts generated by P ∗t (i) as

Et

{
+∞∑
k=0

(βθ)
k λt+k
λtΠt,t+k

[
P ∗t (i) yt+k (i)− Wt+k

ϕ3,t+k
f−1

[
yt+k (i)

ϕ2,t+k

]]}
.

Choosing P ∗t (i) to maximize this present value subject to (B.7) leads to the �rst-order condition

Et

{
+∞∑
k=0

(βθ)
k λt+k (εϕ4,t+k − 1)

λtΠt,t+k

[
P ∗t (i)−

(
εϕ4,t+k

εϕ4,t+k − 1

)
Wt+k

ϕ2,t+kϕ3,t+kf ′ [ht+k (i)]

]
yt+k (i)

}
= 0. (B.8)

In the limit case of perfectly �exible prices (θ = 0), and in a symmetric equilibrium (P ∗t (i) = Pt and
ht(i) = ht), this �rst-order condition becomes

Pt =

(
εϕ4,t

εϕ4,t − 1

)
Wt

ϕ2,tϕ3,tf ′ (ht)
. (B.9)

B.3. Government

The government consists of a �scal authority and a monetary authority. The �scal authority consumes
an exogenous quantity gt ≥ 0 of goods, does not issue bonds, and sets lump-sum taxes on households so as
to balance its budget (making �scal policy Ricardian). We assume for simplicity that government purchases
gt are wasted, but the results would be unchanged if they entered households' utility function in a separable
way.

The monetary authority − i.e., the central bank − has two independent instruments: the nominal stock
of money Mt > 0, or equivalently its (gross) growth rate µt ≡ Mt/Mt−1 > 0, and the (gross) nominal
interest rate on money Imt ≥ 0. We assume that the central bank injects reserves via lump-sum transfers.1

The consolidated budget constraint of the government is thus

Mt = Imt−1Mt−1 + Ptgt − Tt, (B.10)

where Tt denotes the net lump-sum tax imposed by the government (the �scal authority's tax minus the
monetary authority's transfer).

To capture a lower bound on Imt in a simple and stark way, we assume that cash (with no interest
payments) is a perfect substitute for deposits at the central bank in terms of providing liquidity services to
households. This introduces a zero lower bound (ZLB) for the net nominal IOR rate Imt −1 in our model. In
an equilibrium with Imt > 1, households will hold no cash. In an equilibrium with Imt = 1, the decomposition
of money into reserves and cash will be indeterminate, but also inconsequential.

B.4. Market-Clearing Conditions

The bond-market-clearing condition is
bt = 0,

the money-market-clearing condition is

mt =
Mt

Pt
, (B.11)

and the goods-market-clearing condition is
ct + gt = yt. (B.12)

1It would be straightforward to modify our model and allow changes in money balances to be matched by changes in the
monetary authority's holdings of bonds issued by households or the �scal authority; such features, however, would not play a
role in our analysis.
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B.5. Steady-State Existence and Uniqueness

We consider steady-state values of policy-instruments such that Im ≥ 1, µ = 1, and g ≥ 0. Since µ = 1,
the set of steady states is the same under sticky prices (θ > 0) as under �exible prices (θ = 0), so that we
can use the �rst-order condition of �rms' optimization problem under �exible prices (B.9) to characterize
this set. We �rst use (B.2), (B.4), (B.6), (B.9), and (B.12) to get

uc [f (h)− g,m] =

(
ε

ε− 1

)
v′ (h)

f ′ (h)
. (B.13)

We then consider two alternative cases in turn, separable utility (ucm = 0) and non-separable utility (ucm >
0). We show that in both cases, the necessary and su�cient condition for steady-state existence and
uniqueness is Im < 1/β.

In the separable-utility case, the left-hand side of (B.13) does not depend on m and decreases from +∞
to 0 as h increases from h ≡ f−1(g) to +∞. The right-hand side of (B.13) increases as h increases from h
to +∞. Therefore, there is a unique value of h in (h,+∞) that satis�es (B.13). Moreover, (B.3), (B.5), and
(B.13) imply (

ε− 1

ε

)
f ′ (h)

v′ (h)
um [f (h)− g,m] = 1− βIm. (B.14)

The left-hand side of (B.14) decreases from +∞ to 0 as m increases from 0 to +∞. Therefore, there is a
unique value of m that satis�es (B.14) if and only if the right-hand side of (B.14) is positive. In other words,
there exists a unique steady state if and only if Im < 1/β.

In the non-separable-utility case, (B.13) implicitly and uniquely de�nes a functionM such that

m =M (h) . (B.15)

This function is de�ned over (h,+∞), and it is strictly increasing (M′ > 0). We then use (B.3), (B.5),
(B.13), and (B.15) to get (

ε− 1

ε

)
f ′ (h)

v′ (h)
um [f (h)− g,M (h)] = 1− βIm. (B.16)

The function z(h) ≡ um [f (h)− g,M (h)] is strictly decreasing in h. The reason is that (B.13) implies that
uc [f (h)− g,M (h)] is strictly increasing in h, i.e. that

ucc [f (h)− g,M (h)] f ′ (h) + ucm [f (h)− g,M (h)]M′ (h) > 0,

which implies in turn that

z′ (h) = ucmf
′ (h) + ummM′ (h) <

−f ′ (h)

ucm

(
uccumm − u2cm

)
≤ 0,

where the functions ucc, umm, and ucm are evaluated at [f (h)− g,M (h)]. Since z′(h) < 0, the left-hand
side of (B.16) decreases from +∞ to 0 as h increases from h to +∞. Therefore, there is a unique value of h
that satis�es this equation if and only if its right-hand side is positive. In other words, there exists a unique
steady state if and only if Im < 1/β.

B.6. Log-Linearization

We assume that Im < 1/β and log-linearize the equilibrium conditions of the model around its unique
steady state. To derive the Phillips curve (C.2), we log-linearize �rms' �rst-order condition (B.8), and use
the de�nition of the real wage wt ≡Wt/Pt, to get

P̂ ∗t = (1− βθ)Et

{
+∞∑
k=0

(βθ)
k

[
ŵt+k + P̂t+k − m̂p t+k|t − ϕ̂3,t+k −

ϕ̂4,t+k

ε− 1

]}
, (B.17)
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where variables with hats denote log-deviations from steady-state values, it ≡ Ît, and mp t+k|t denotes the
marginal productivity in period t + k for a �rm whose price was last set in period t. Log-linearizing the
production function (B.6) gives

ĥt =
f

f ′h
(ŷt − ϕ̂2,t) , (B.18)

so that we can rewrite m̂p t+k|t as

m̂p t+k|t = ϕ̂2,t +
f ′′h

f ′
ĥ t+k|t = m̂pt+k +

f ′′h

f ′

(
ĥ t+k|t − ĥt+k

)
= m̂pt+k +

ff ′′

(f ′)
2

(
ŷ t+k|t − ŷt+k

)
= m̂pt+k −

εff ′′

(f ′)
2

(
P̂ ∗t − P̂t+k

)
, (B.19)

where mpt+k denotes the average marginal productivity in period t+ k. Using this result and

πt ≡ log (Πt) = (1− θ)
(
P̂ ∗t − P̂t−1

)
,

and following the same steps as in, e.g., Galí (2008, Chapter 3), we can rewrite (B.17) as

πt = βEt {πt+1}+
(1− θ) (1− βθ)

θ
[
1− εff ′′

(f ′)2

] (
ŵt − m̂pt − ϕ̂3,t −

ϕ̂4,t

ε− 1

)
. (B.20)

Now, log-linearizing the goods-market-clearing condition (B.12) gives

c̃t + g̃t = ŷt, (B.21)

where c̃t ≡ (c/y)ĉt and g̃t ≡ (g/y)ĝt. Log-linearizing the �rst-order condition (B.4), and using (B.18) and
(B.21), gives

ŵt =

(
−uccy

uc
+
v′′h

v′
f

f ′h

)
ŷt −

ucmm

uc
m̂t +

uccy

uc
g̃t − ϕ̂1,t −

v′′h

v′
f

f ′h
ϕ̂2,t. (B.22)

Moreover, we have

m̂pt = ϕ̂2,t +
ff ′′

(f ′)
2 (ŷt − ϕ̂2,t) . (B.23)

Using (B.22) and (B.23), we can then rewrite (B.20) as the Phillips curve

πt = βEt {πt+1}+ κ (ŷt − δmm̂t − δg g̃t − δϕϕ̂t) (B.24)

with

κ ≡ (1− θ) (1− βθ)

θ
[
1− εff ′′

(f ′)2

] ψ > 0,

δm ≡
(
ucmm

uc

)
ψ−1 ≥ 0,

δg ≡
(
−uccy
uc

)
ψ−1 ∈ (0, 1),

δϕ ≡

{
1ϕt=ϕ1,t

+

[
1 +

v′′h

v′
f

f ′h
− ff ′′

(f ′)
2

]
1ϕt=ϕ2,t

+ 1ϕt=ϕ3,t
+

(
1

ε− 1

)
1ϕt=ϕ4,t

}
ψ−1 > 0,
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where

ψ ≡ −uccy
uc

+
v′′h

v′
f

f ′h
− ff ′′

(f ′)
2 > 0.

Note that, to write this Phillips curve in a compact way, we have considered a single supply shock ϕt ∈
{ϕ1,t, ϕ2,t, ϕ3,t, ϕ4,t} and used indicator functions in the de�nition of δϕ: for any k ∈ {1, 2, 3, 4}, 1ϕt=ϕk,t
takes the value one if ϕt = ϕk,t and the value zero otherwise.

Log-linearizing the �rst-order condition (B.5) and using (B.21) gives the money-demand equation

m̂t = χy (ŷt − g̃t)− χi (it − imt ) , (B.25)

where imt ≡ Îmt and

χy ≡
(
ucmm

uc
− ummm

um

)−1(
ucmy

um
− uccy

uc

)
> 0,

χi ≡
(
ucmm

uc
− ummm

um

)−1(
βIm

1− βIm

)
> 0.

Finally, log-linearizing the �rst-order condition (B.3) and using (B.21) gives the IS equation

ŷt = Et {ŷt+1} −
1

σ
(it − Et {πt+1} − rt)− ηEt {∆m̂t+1} − Et {∆g̃t+1} , (B.26)

where ∆ ≡ 1− L denotes the �rst-di�erence operator, rt ≡ −Et{∆ζ̂t+1}, and

σ ≡ −uccy
uc

> 0,

η ≡
(
−uccy
uc

)−1
ucmm

uc
≥ 0.

Appendix C: MIU Model (Log-Linearized Version)

This appendix proves Proposition 6 (stated in the main text), which essentially says that our MIU model
delivers the same results as our simple model. The �rst subsection provides an outline of the proof, following
the same steps as in Section 3 for our simple model. The following subsections prove some speci�c claims
made in the �rst subsection.

For convenience, we keep the same notations as in our simple model in Section 3 for the reduced-form
parameters (σ, κ, δg, δϕ, χy, χi), the characteristic polynomial (P(X)), the roots of this polynomial (ρ,
ω1, ω2), and the exogenous driving term in the dynamic equation (Zt), although all of them are in fact
model-speci�c.

C.1. Outline of the Proof of Proposition 6

We start from the log-linearized reduced form of our MIU model, made of the IS equation (B.26), the
Phillips curve (B.24), and the money-demand equation (B.25) derived in Appendix B.6. For simplicity, we
replace the notations ŷt, m̂t, g̃t, and ϕ̂t with the notations yt, mt, gt, and ϕt (as everywhere in the main
text), and we thus write these equations as

yt = Et {yt+1} −
1

σ
(it − Et {πt+1} − rt) + η (mt − Et {mt+1}) + gt − Et {gt+1} , (C.1)

πt = βEt {πt+1}+ κ (yt − δmmt − δggt − δϕϕt) , (C.2)

mt = χy (yt − gt)− χi (it − imt ) , (C.3)

where β ∈ (0, 1), η ≥ 0, δm ≥ 0, δg ∈ (0, 1), and all the other parameters are positive.
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In the case in which the utility function is not separable in consumption and money, we have η > 0
and δm > 0. In this case, the IS equation (C.1) involves real-money terms (in mt and Et{mt+1}) because
the marginal utility of consumption in the consumption Euler equation depends on real money. Similarly,
the Phillips curve (C.2) involves a real-money term (in mt) because real money increases the marginal
utility of consumption, which in turn decreases the real wage and hence the marginal cost of production of
�rms. In the alternative case in which the utility function is separable in consumption and money, we have
η = δm = 0, and these two equations become identical to the IS equation (1) and the Phillips curve (2)
of the two models considered so far (the basic NK model in Section 2 and our simple model in Section 3).
The money-demand equation (C.3) is isomorphic to its counterpart (7) in our simple model, except for the
presence of the government-purchases shock gt. This shock appears in (C.3) because money demand now
depends on consumption, which we have eliminated using the goods-market-clearing condition.

Our MIU model implies, in particular, the following two restrictions on the reduced-form parameters:

η =
δm
δg

, (C.4)

δmχy < 1, (C.5)

as we show in Appendix C.2. These restrictions will play an important role in our determinacy result below
(as we will see). The equality (C.4) says that the weight of mt relative to gt (and Et{mt+1} relative to
Et{gt+1}) in the IS equation, η, is identical to the weight of mt relative to gt in the Phillips curve, δm/δg.
The reason is that mt and gt come exclusively from the marginal utility of consumption in both equations.
The marginal utility of consumption depends negatively on consumption, and therefore positively on gt for a
given yt (through the goods-market-clearing condition); and it depends non-negatively on mt, with a weight
of mt relative to gt equal to η = δm/δg. The inequality (C.5) re�ects how holding money mitigates changes
in �rms' marginal cost of production (through the real wage). For a given spread it− imt , a rise in output yt
has two opposite e�ects on �rms' marginal cost of production (i.e., on the term in factor of κ in the Phillips
curve): a standard positive direct e�ect (with elasticity 1), and a negative indirect e�ect via the implied rise
in money mt (with elasticity δmχy). The inequality states that the direct e�ect dominates the indirect one
(i.e., δmχy < 1).

Under permanently exogenous monetary-policy instruments imt and Mt (in particular imt = i∗t exogenous
for all t ∈ Z), the IS equation (C.1), the Phillips curve (C.2), the money-demand equation (C.3), and the
identities mt = Mt − pt and πt = pt − pt−1 lead to the following dynamic equation relating pt to Et{pt+2},
Et{pt+1}, pt−1, and exogenous terms:

Et
{
LP

(
L−1

)
pt
}

= Zt

with P (X) ≡ X3 −
[
2 +

1

β
+

κ

βσ
+

(1− δg) δmκ
βδg

+
χy
σχi

]
X2 +

[
1 +

2

β
+

κ

βσ

+
(1− δg) δmκ

βδg
+

(1 + β)χy
βσχi

+
(1− δmχy)κ

βσχi

]
X −

(
1

β
+

χy
βσχi

)
,

Zt ≡
−κ
βσ

(i∗t − rt) +

[
(1− δg) δm

δg
+

1− δmχy
σχi

]
κ

β
Mt −

(1− δg) δmκ
βδg

Et {Mt+1}

+

(
1 +

χy
σχi

)
(1− δg)κ

β
gt −

(1− δg)κ
β

Et {gt+1} −
(

1 +
χy
σχi

)
δϕκ

β
ϕt +

δϕκ

β
Et {ϕt+1} ,

where we have used the equality (C.4) to replace η by δm/δg. Using the inequality (C.5), we show in
Appendix C.3 that, as in our simple model of Section 3, the characteristic polynomial P(X) has one root
inside the unit circle (ρ ∈ (0, 1)) and two roots outside the unit circle (ω1 and ω2 with |ω1| ≤ |ω2|). With
one eigenvalue inside the unit circle (ρ) for one predetermined variable (pt−1), thus, our MIU model satis�es
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Blanchard and Kahn's (1980) conditions and has a unique bounded solution under permanently exogenous
monetary-policy instruments.

In the MIU model, as in the simple model of Section 3, setting exogenously imt and Mt amounts to
following a �shadow Wicksellian rule� for it. Indeed, if the price level rises (making real money fall, given
that nominal money is �xed), or if output rises, then the marginal utility of real money increases. Since the
IOR rate is �xed, the interest rate on bonds has then to increase for private agents to remain indi�erent
between holding money and holding bonds. What is di�erent from Section 3, however, is that existing results
for Wicksellian rules in the basic NK model (e.g., Woodford, 2003, Chapter 4) do not apply to the MIU
model with non-separable utility (i.e. with η = δm/δg > 0). In fact, not all Wicksellian rules would ensure
determinacy in this model. What our determinacy result says, thus, is that the speci�c shadow Wicksellian
rule that arises under permanently exogenous monetary-policy instruments, given the restriction (C.5) that
the model imposes on its coe�cients, always delivers determinacy.

We solve the dynamic equation forward in the same way as in Section 3, and obtain that in�ation in the
unique bounded solution is again characterized by (10) − keeping in mind, though, that the roots ρ, ω1, ω2,
and the exogenous driving term Zt have changed. Using the solution for in�ation (10), the Phillips curve
(C.2), and the identities mt = Mt − pt and πt = pt − pt−1, we then get the solution for output:

yt = −ϑpt−1 + δmMt + δggt + δϕϕt −
Et

(ω2 − ω1)κ

{
+∞∑
k=0

(
ξ1ω
−k−1
1 − ξ2ω−k−12

)
Zt+k

}
, (C.6)

where now ϑ ≡ (1 − ρ)(1 − βρ)/κ + δmρ and ξj ≡ β(ωj + ρ − 1) + κδm − 1 for j ∈ {1, 2}. Like our simple
model's equilibrium (10)-(11), and unlike the basic NK model's standard equilibrium (5)-(6), the MIU
model's equilibrium (10) and (C.6) involves only ω−k1 and ω−k2 terms with ω1 > 1 and ω2 > 1. Therefore,
the longer the horizon k, the smaller the e�ects of shocks occurring at date t + k on in�ation and output
at date t in the MIU model, regardless of which type of shock (preference, monetary, �scal, or supply) we
consider. In particular, neither the forward-guidance puzzle nor the �scal-multiplier puzzle can arise in the
MIU model. Moreover, because determinacy obtains for any degree of price stickiness θ ∈ (0, 1) and in
particular as θ → 0, the paradox of �exibility does not arise either. In Appendix C.4, we show that the
limits of πt and yt as θ → 0 take �nite values, and that these values coincide with the values that πt and yt
take under perfectly �exible prices.

In Appendix C.5, we show that we can asymptotically remove the monetary friction from our MIU model
in (at least) two cases: the case with separable utility, and the case of utility over a constant-elasticity-of-
substitution (CES) aggregator of money and consumption. In either case, as we remove the monetary
friction at the same speed as we shrink the steady-state spread between the interest rate on bonds and the
IOR rate, the steady state and reduced form of our MIU model converge to the steady state and reduced
form of the basic NK model, with real money balances bounded away from zero and in�nity along the way.
In particular, the reduced-form parameters σ, κ, δg, and δϕ converge to their counterparts in the basic NK
model, while η, δm, 1/χi, and χy/χi converge to zero. As a result, the characteristic polynomial P(X) goes
to (X − 1)Pb(X); its roots ρ, ω1, and ω2 go respectively to ρb, 1, and ωb; and the exogenous driving term
Zt goes to Z

b
t . Using these limit results, we get that the unique local equilibrium of our MIU model (10)

and (C.6) converges to (12)-(13). Thus, our MIU model serves to select the same equilibrium of the basic
NK model under a permanently exogenous policy rate as our simple model in the previous section.

Proposition 6 follows.

C.2. Restrictions on the Reduced-Form Parameters

The reduced-form parameters η, δm, and δg, which are de�ned in Appendix B.6, are straightforwardly
linked to each other through the equality (C.4). The reduced-form parameters δm and χy, which are also
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de�ned in Appendix B.6, satisfy the inequality (C.5) because

1− δmχy = 1−

[
−uccy
uc

+
v′′h

v′
f

f ′h
− ff ′′

(f ′)
2

]−1(
ucmm

uc
− ummm

um

)−1(
ucmc

um
− uccy

uc

)
ucmm

uc

=

[
−uccy
uc

+
v′′h

v′
f

f ′h
− ff ′′

(f ′)
2

]−1(
ucmm

uc
− ummm

um

)−1{[
v′′h

v′
f

f ′h
− ff ′′

(f ′)
2

]
(
ucmm

uc
− ummm

um

)
+

(y − c)muccumm
ucum

+
cm

ucum

(
uccumm − u2cm

)}
> 0.

C.3. Root Analysis

We �rst show that 0 < ρ < 1 < |ω1| ≤ |ω2|. To that aim, we write the polynomial P(X) as

P (X) = X3 − a2X2 + a1X − a0

with

a2 ≡ 2 +
1

β
+

κ

βσ
+

(1− δg) δmκ
βδg

+
χy
σχi

> 3,

a1 ≡ 1 +
2

β
+

κ

βσ
+

(1− δg) δmκ
βδg

+
(1 + β)χy
βσχi

+
(1− δmχy)κ

βσχi
> 0,

a0 ≡ 1

β
+

χy
βσχi

> 0,

where the inequality a2 > 3 comes from β ∈ (0, 1) and δg ∈ (0, 1), and the inequality a1 > 0 from δg ∈ (0, 1)
and (C.5).

We have P(0) = −a0 < 0 and P(1) = (1 − δmχy)κ/(βσχi) > 0, where the last inequality comes from
(C.5). Therefore, P(X) has either one or three real roots inside (0, 1). Moreover, the inequalities a2 > 0,
a1 > 0, and a0 > 0 imply that P(X) < 0 for all X < 0, so that P(X) has no negative real roots. Therefore,
P(X) has at least one real root inside (0, 1), which we denote by ρ, and its other two roots, which we denote
by ω1 and ω2 with |ω1| ≤ |ω2|, must be (i) both real and inside (0, 1), or (ii) both real and larger than 1, or
(iii) both complex and conjugates of each other. Now, we have ρ+ ω1 + ω2 = a2 > 3. Therefore, Case (i) is
impossible, and in Case (iii) the common real part of ω1 and ω2 is larger than 1. As a consequence, in the
remaining two possible cases, namely Cases (ii) and (iii), ω1 and ω2 lie outside the unit circle.

We now show that ω1 and ω2 can be real numbers, and that they can also be complex (non-real) numbers.
Consider, for example, the separable and iso-elastic speci�cation

u(ct,mt) =
c1−σct − 1

1− σc
+
m1−σm
t − 1

1− σm
,

where σc > 0 and σm > 0. Under this speci�cation, σ, κ, δm, δg, and χy/χi do not depend on σm, but
χi and χy do. Therefore, a2 and a0 do not depend on σm, but a1 does. Since limσm→+∞ χi = 0, we have
limσm→+∞ a1 = +∞. As a consequence, for su�ciently large values of σm, P(X) = X3 − a2X2 + a1X − a0
is positive for all X ≥ 1, so that Case (ii) is impossible and ω1 and ω2 are complex numbers. Moreover,
since limσm→0 χi = +∞, we have

lim
σm→0

P
(

1 +
χy
σχi

)
= −

(
1 +

χy
σχi

)
χyκ

βσ2χi
< 0.

Therefore, for su�ciently small values of σm, we have P[1 + χy/(σχi)] < 0, which, together with P(1) > 0,
implies that ω1 and ω2 are positive real numbers.

Online Appendix − 12



By continuity, there also exist non-separable speci�cations of u that can make ω1 and ω2 real or complex
depending on the calibration. Consider, for instance, the iso-elastic speci�cation

u(ct,mt) =
c1−σct − 1

1− σc
+
m1−σm
t − 1

1− σm
+ εcνtm

1−ν
t ,

where ν ∈ (0, 1) and ε > 0. If ε is su�ciently small, then, as above, ω1 and ω2 will be real for su�ciently
small values of σm and complex for su�ciently large values of σm.

C.4. Resolution of the Paradox of Flexibility

Using the de�nition of Zt, and after some simple algebra, we can rewrite (10) and (C.6) as

πt = − (1− ρ) pt−1 +
κ

β (ω2 − ω1)
Et

{
− 1

σ

+∞∑
k=0

(
ω−k−11 − ω−k−12

) (
i∗t+k − rt+k

)
+

+∞∑
k=0

(
ξM1 ω−k−11 − ξM2 ω−k−12

)
Mt+k −

+∞∑
k=0

(
ξg1ω

−k−1
1 − ξg2ω

−k−1
2

)
gt+k

+

+∞∑
k=0

(
ξϕ1 ω

−k−1
1 − ξϕ2 ω

−k−1
2

)
ϕt+k

}
, (C.7)

yt = −ϑpt−1 +
δm
δg
Mt + gt +

Et
β (ω2 − ω1)

{
1

σ

+∞∑
k=0

(
ξ1ω
−k−1
1 − ξ2ω−k−12

) (
i∗t+k − rt+k

)
−

+∞∑
k=0

(
ξ1ξ

M
1 ω−k−11 − ξ2ξM2 ω−k−12

)
Mt+k +

+∞∑
k=0

(
ξ1ξ

g
1ω
−k−1
1 − ξ2ξg2ω

−k−1
2

)
gt+k

−
+∞∑
k=0

(
ξ1ξ

ϕ
1 ω
−k−1
1 − ξ2ξϕ2 ω

−k−1
2

)
ϕt+k

}
, (C.8)

where ϑ ≡ (1− ρ)(1− βρ)/κ+ δmρ and

ξj ≡ β (ωj + ρ− 1) + κδm − 1,

ξMj ≡ 1− δmχy
σχi

− (1− δg) (ωj − 1) δm
δg

,

ξgj ≡
(
ωj − 1− χy

σχi

)
(1− δg) ,

ξϕj ≡
(
ωj − 1− χy

σχi

)
δϕ

for j ∈ {1, 2}.
The only parameter that depends on the degree of price stickiness θ in the structural equations (C.1),

(C.2), and (C.3) is the slope κ of the Phillips curve (C.2). We have limθ→0 κ = +∞ and hence[
−βσδg

δg + (1− δg)σδm

]
lim
θ→0

[
P (X)

κ

]
= X (X − ωn1 )

for any X ∈ R, where

ωn1 ≡ 1 +

[
1− δmχy

δg + (1− δg)σδm

]
δg
χi

> 1,
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where in turn the inequality follows from δg ∈ (0, 1) and (C.5). Therefore, we get

lim
θ→0

ρ = 0, lim
θ→0

ω1 = ωn1 , and lim
θ→0

ω2 = +∞. (C.9)

Using (C.9) and

(1− ρ) (ω1 − 1) (ω2 − 1) = P (1) =
(1− δmχy)κ

βσχi
,

we also get that

lim
θ→0

κ

ω2
=

βσδg
δg + (1− δg)σδm

. (C.10)

Using (C.9) and (C.10), we can easily determine the limits of (C.7) and (C.8) as θ → 0:

lim
θ→0

πt = −pt−1 +
δg

δg + (1− δg)σδm
Et

{
+∞∑
k=0

(ωn1 )
−k−1 {− (i∗t+k − rt+k)

+ (ωn1 − 1)Mt+k +

[
χy
χi
− σ (ωn1 − 1)

]
[(1− δg) gt+k − δϕϕt+k]

}}
+

σδg
δg + (1− δg)σδm

[
(1− δg) δm

δg
Mt + (1− δg) gt − δϕϕt

]
, (C.11)

lim
θ→0

yt =
δgδm

δg + (1− δg)σδm
Et

{
+∞∑
k=0

(ωn1 )
−k−1 {

i∗t+k − rt+k − (ωn1 − 1)Mt+k

+

[
σ (ωn1 − 1)− χy

χi

]
[(1− δg) gt+k − δϕϕt+k]

}}
+

δg
δg + (1− δg)σδm

[
δmMt + δggt +

(
1 +

σδm
δg

)
δϕϕt

]
. (C.12)

These limits are �nite, unlike their counterparts in the basic NK model.
We now show that the right-hand sides of (C.11) and (C.12) coincide with the values taken by πt and

yt when prices are perfectly �exible (θ = 0). To determine these values, we �rst log-linearize the �rst-order
condition of �rms' optimization problem under �exible prices (B.9), and use (B.18), to get

ŵt =
ff ′′

(f ′)
2 ŷt +

[
1− ff ′′

(f ′)
2

]
ϕ̂2,t + ϕ̂3,t +

ϕ̂4,t

ε− 1
. (C.13)

Using (B.22) and (C.13), considering a single supply shock ϕt ∈ {ϕ1,t, ϕ2,t, ϕ3,t, ϕ4,t}, and replacing the
notations ŷt, m̂t, g̃t, and ϕ̂t by the notations yt, mt, gt, and ϕt (for simplicity and consistency with the
main text), we then get

yt = δmmt + δggt + δϕϕt. (C.14)

Finally, using the IS equation (C.1), the money-demand equation (C.3), the identity mt = Mt − pt, the
exogenous policy-rate setting imt = i∗t , and the solution for �exible-price output (C.14), we get the following
dynamic equation under �exible prices:

pt = (ωn1 )
−1 Et {pt+1}+

δg (ωn1 )
−1

δg + (1− δg)σδm

{
− (i∗t − rt) +

[
1− δmχy

χi
+

(1− δg)σδm
δg

]
Mt

− (1− δg)σδm
δg

Et {Mt+1}+

(
σ +

χy
χi

)
(1− δg) gt − σ (1− δg)Et {gt+1}

−
(
σ +

χy
χi

)
δϕϕt + σδϕEt {ϕt+1}

}
,
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where we have used the equality (C.4) to replace η by δm/δg. Iterating this equation forward to +∞ leads
to the following value for the price level pt in our MIU model under �exible prices:

pt =
δg

δg + (1− δg)σδm
Et

{
+∞∑
k=0

(ωn1 )
−k−1 {− (i∗t+k − rt+k)+ (ωn1 − 1)Mt+k

+

[
χy
χi
− σ (ωn1 − 1)

]
[(1− δg) gt+k − δϕϕt+k]

}}
+

σδg
δg + (1− δg)σδm

[
(1− δg) δm

δg
Mt + (1− δg) gt − δϕϕt

]
, (C.15)

which implies in turn that the value of πt ≡ pt− pt−1 in our MIU model under �exible prices coincides with
the right-hand side of (C.11). In turn, using (C.14), (C.15), and the identity mt = Mt − pt, we get that the
value of yt in our MIU model under �exible prices coincides with the right-hand side of (C.12). Thus, our
MIU model solves the paradox of �exibility: the limits of πt and yt as θ → 0 are �nite and coincide with
the values of πt and yt when θ = 0.

C.5. Convergence to the Basic NK Model

We start with the separable speci�cation

u(ct,mt) = u1 (ct) + γu2 (mt) ,

where γ > 0 is a scale parameter. Under this speci�cation, the steady-state value h of ht, given by (B.13)
with uc[f(h)− g,m] = u′1[f(h)− g], is identical to the steady-state value of ht in the basic NK model (with
consumption-utility function u1). The IS equation (C.1) and the Phillips curve (C.2) are also identical to
the IS equation (1) and the Phillips curve (2) of the basic NK model, in the sense that their reduced-form
parameters take the same values (in particular η = 0 and δm = 0). The steady-state value m of mt is given
by (B.14), which can be rewritten as

u′2 (m) =

(
1− βIm

γ

)(
ε

ε− 1

)
v′ (h)

f ′ (h)
. (C.16)

If (Im, γ) goes to (1/β, 0) with (1−βIm)/γ bounded away from zero and in�nity, as in the thought experiment
of Subsection 4.1, thenm is bounded away from zero and in�nity. In this case, χy = (−u′′2m/u′2)−1(−u′′1y/u′1)
is also bounded away from zero and in�nity, while χi = (−u′′2m/u′2)−1βIm/(1 − βIm) goes to in�nity.
Therefore, 1/χi and χy/χi converge to zero, and the money-demand equation (C.3) converges to it = imt .
Alternatively, if Im goes to 1/β holding γ constant, as in the policy experiment of Section 5, then m goes
to in�nity (asymptotic satiation). In that case, we still have 1/χi and χy/χi converging to zero, and (C.3)
converging to it = imt , if the elasticity −u′′2m/u′2 is bounded from above − a condition that is met, in
particular, for isoelastic u2 functions.

We now turn to the CES-based speci�cation

u(ct,mt) = U
{

[(1− γ) cαt + γmα
t ]

1/α
}
,

where α ∈ (−∞, 1), γ ∈ (0, 1), and the function U , de�ned over the set of positive real numbers R>0, is
twice di�erentiable, strictly increasing (U ′ > 0), and strictly concave (U ′′ < 0). In addition, we impose that
U ′′(x)x/U ′(x) ≤ 1 − α for any x > 0, which is the necessary and su�cient condition for ucm ≥ 0. Under
this speci�cation, (B.5) at the steady state can be rewritten as m = φc = φ[f(h)− g], where

φ ≡
[

γ

(1− γ) (1− βIm)

] 1
1−α

,
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which implies that (B.13) can in turn be rewritten as

(1− γ) [(1− γ) + γφα]
1−α
α U ′

{
[(1− γ) + γφα]

1
α [f (h)− g]

}
=

(
ε

ε− 1

)
v′ (h)

f ′ (h)
. (C.17)

If (Im, γ) goes to (1/β, 0) with (1−βIm)/γ bounded away from zero and in�nity, as in the thought experiment
of Subsection 4.1, then φ is bounded away from zero and in�nity, and (C.17) converges to

U ′ [f (h)− g] =

(
ε

ε− 1

)
v′ (h)

f ′ (h)
.

This last equation, which characterizes the limit value of h, is the same as the equation implicitly and
uniquely de�ning the steady-state value h? of ht in the basic NK model (with consumption-utility function
U). Therefore, h, y, and c converge respectively to h?, y? ≡ f(h?), and c? ≡ f(h?)−g, while m = φ[f(h)−g]
is bounded away from zero and in�nity. As a consequence, we have C ≡ [(1− γ)cα + γmα]1/α → c? and

−uccy
uc

=
( c
C

)α y
c

{
(1− α) γφα + (1− γ)

[
−U ′′ (C)C

U ′ (C)

]}
−→ −U ′′ (c?) y?

U ′ (c?)
,

ucmm

uc
= γφα

( c
C

)α{
(1− α)−

[
−U ′′ (C)C

U ′ (C)

]}
−→ 0,

−ummm
um

=
( c
C

)α{
(1− α) (1− γ) + γφα

[
−U ′′ (C)C

U ′ (C)

]}
−→ 1− α,

ucmy

um
= (1− γ)

( c
C

)α y
c

{
(1− α)−

[
−U ′′ (C)C

U ′ (C)

]}
−→ (1− α)

y?

c?
−
[
−U ′′ (c?) y?

U ′ (c?)

]
.

Using these limit results, we get that the reduced-form parameters σ, κ, δg, and δϕ converge to their
counterparts in the basic NK model, while η, δm, 1/χi, and χy/χi converge to zero. We conclude that the
steady state and reduced form of our MIU model, under the CES-based speci�cation, converge to the steady
state and reduced form of the basic NK model.

Appendix D: Model With Banks

This appendix proves Proposition 7 (stated in the main text), which essentially says that our model with
banks delivers the same results as our simple model and our MIU model. The �rst subsection provides an
outline of the proof, following the same steps as in Section 3 for our simple model and Appendix C.1 for our
MIU model. The following subsections prove some speci�c claims made in the �rst subsection.

D.1. Outline of the Proof of Proposition 7

As we show in Diba and Loisel (2020), the IS equation of our model with banks is the same as the IS
equation (1) of the basic NK model, while the Phillips curve and the money-demand equation of our model
with banks are

πt = βEt {πt+1}+ κ (yt − δmmt − δggt − δϕϕt) , (D.1)

mt = χyyt − χi (it − imt )− χggt − χϕϕt, (D.2)

where β ∈ (0, 1), δg ∈ (0, 1), χϕ ≥ 0, and all the other parameters are positive. The Phillips curve (D.1)
is isomorphic to its counterpart (C.2) in the MIU model − but not identical to it, since the reduced-form
parameters κ, δm, δg, and δϕ have changed (even though we keep, for convenience, the same notation). The
reason why real reserves mt appear in the Phillips curve (D.1) is that they reduce banking costs, which in
turn lowers the borrowing costs of �rms and hence their marginal cost of production. Like its counterpart
(C.3) in the MIU model, the money-demand equation (D.2) involves the government-purchases shock gt
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because money demand depends on consumption, which we have eliminated using the goods-market-clearing
condition.2 Unlike (C.3), however, it also involves the supply shock ϕt, because the demand for reserves
now depends on the volume of loans, which in turn depends on �rms' wage bill, which in turn depends on
the supply shock for a given output level.3

Our model with banks implies, in particular, the following restriction on the reduced-form parameters:

σ < χy <
1

δm
, (D.3)

as we show in Diba and Loisel (2020). This double inequality will play a key role in our results below (as we
will see). The �rst inequality in (D.3) arises from the fact that bank loans serve to �nance the wage bill (or
some fraction of it). If output yt increases by 1% for given government purchases gt, the marginal utility of
consumption decreases by σ%; so, the wage, the wage bill, and loans all increase by more than σ%; and, in
turn, so does the demand for reserves mt for a given spread it − imt (i.e., χy > σ). The second inequality in
(D.3) is similar to the inequality (C.5) in the MIU model. Here, it re�ects how holding reserves mitigates
changes in banking costs. For a given spread it − imt , a rise in output yt has two opposite e�ects on �rms'
marginal cost of production (i.e., on the term in factor of κ in the Phillips curve): a standard positive direct
e�ect (with elasticity 1), and a negative indirect e�ect via the implied rise in reserves mt (with elasticity
δmχy). The inequality states that the direct e�ect dominates the indirect one (i.e., δmχy < 1).

Under permanently exogenous monetary-policy instruments imt and Mt (in particular imt = i∗t exogenous
for all t ∈ Z), the IS equation (1), the Phillips curve (D.1), the money-demand equation (D.2), and the
identities mt = Mt − pt and πt = pt − pt−1 lead to the following dynamic equation relating pt to Et{pt+2},
Et{pt+1}, pt−1, and exogenous terms:

Et
{
LP

(
L−1

)
pt
}

= Zt,

where P (X) ≡ X3 −
[
2 +

1

β
+

χy
σχi

+

(
1

σ
− δm

)
κ

β

]
X2 +

[
1 +

2

β
+

(
1 +

1

β

)
χy
σχi

+

(
1

σ
− δm

)
κ

β
+ (1− δmχy)

κ

βσχi

]
X −

(
1

β
+

χy
βσχi

)
,

Zt ≡
−κ
βσ

(i∗t − rt) +

[
1

σχi
−
(

1 +
χy
σχi

)
δm

]
κ

β
Mt +

δmκ

β
Et {Mt+1}

+

[(
1 +

χg
σχi

)
−
(

1 +
χy
σχi

)
δg

]
κ

β
gt −

(1− δg)κ
β

Et {gt+1}

+

[
χϕ
σχi
−
(

1 +
χy
σχi

)
δϕ

]
κ

β
ϕt +

δϕκ

β
Et {ϕt+1} .

Using the double inequality (D.3), we show in Appendix D.2 that the roots of the characteristic polynomial
P(X) are three real numbers ρ, ω1, and ω2 such that 0 < ρ < 1 < ω1 < ω2. With one eigenvalue inside the
unit circle (ρ) for one predetermined variable (pt−1), thus, our model with banks satis�es Blanchard and
Kahn's (1980) conditions and has a unique bounded solution under permanently exogenous monetary-policy
instruments.

In our model with banks, setting exogenously imt andMt also amounts to following a �shadow Wicksellian
rule� for it, as in the previous two models (the simple model of Section 3 and the MIU model of Subsection
4.1). Existing results for Wicksellian rules in the basic NK model do not apply to our model with banks, and
not all Wicksellian rules would ensure determinacy in this model. What our determinacy result says is that

2We no longer have χg = χy , though, because money demand now depends on yt not only through consumption (via the
goods-market-clearing condition), but also through loans (which are proportional to the wage bill).

3The only exception is when the supply shock is a markup shock − in which case χϕ = 0.
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the speci�c shadow Wicksellian rule that arises under permanently exogenous monetary-policy instruments,
given the restriction (D.3) that the model imposes on its coe�cients, always delivers determinacy.

We determine the unique local equilibrium of our model with banks in the same way as the unique local
equilibrium of our MIU model in Appendix C.1. We obtain that in�ation and output in this equilibrium are
again characterized by (10) and (C.6) − keeping in mind, though, that the roots ρ, ω1, ω2, the reduced-form
parameters κ, δm, δg, δϕ, and the exogenous driving term Zt have changed. Since (10) and (C.6) involve only
ω−k1 and ω−k2 terms with ω1 > 1 and ω2 > 1, neither the forward-guidance puzzle nor the �scal-multiplier
puzzle can arise in our model with banks. Moreover, because determinacy obtains for any degree of price
stickiness θ ∈ (0, 1) and in particular as θ → 0, the paradox of �exibility does not arise either in this model,
as we formally show in Appendix D.3.

As we elaborate in Appendix D.4, as the scale parameter of banking costs and the steady-state interest-
rate spread are shrunk to zero (at suitable rates, to keep a positive and �nite level of steady-state real reserve
balances in the limit), the steady state and reduced form of our model with banks converge to the steady
state and reduced form of the basic NK model. Therefore, as previously, the characteristic polynomial P(X)
goes to (X − 1)Pb(X); its roots ρ, ω1, and ω2 go respectively to ρb, 1, and ωb; and the exogenous driving
term Zt goes to Z

b
t . Using these limit results, we get again that the unique local equilibrium of our model

with banks (10) and (C.6) converges to (12)-(13). Thus, our model with banks serves to select the same
equilibrium of the basic NK model under a permanently exogenous policy rate as our previous two models.

Proposition 7 follows.

D.2. Root Analysis

We show that 0 < ρ < 1 < ω1 < ω2. The polynomial P(X) can be rewritten as

P (X) = X3 −
(

1 + 2β + βΘ1 + Θ2

β

)
X2 +

[
2 + β + (1 + β) Θ1 + Θ2 + Θ3

β

]
X −

(
1 + Θ1

β

)
= (X − 1−Θ1)

[
X2 −

(
1 + β + Θ2

β

)
X +

1

β

]
−
(

Θ1Θ2 −Θ3

β

)
X,

where Θ1 ≡ χy/(σχi) > 0, Θ2 ≡ (1/σ − δm)κ, and Θ3 ≡ (1 − δmχy)κ/(σχi). The double inequality (D.3)
implies Θ2 > 0, Θ3 > 0, and Θ1Θ2−Θ3 = (χy−σ)κ/(σ2χi) > 0. Therefore, we get P(0) = −(1+Θ1)/β < 0,
P(1) = Θ3/β > 0, P(1 + Θ1) = −(Θ1Θ2 − Θ3)(1 + Θ1)/β < 0, and limX→+∞ P(X) = +∞ > 0. As a
consequence, the roots of P (X) are three real numbers ρ, ω1, and ω2 such that 0 < ρ < 1 < ω1 < 1+Θ1 < ω2.

D.3. Resolution of the Paradox of Flexibility

Using the de�nition of Zt, and after some simple algebra, we can rewrite (10) and (C.6) as

πt = − (1− ρ) pt−1 +
κ

β (ω2 − ω1)
Et

{
− 1

σ

+∞∑
k=0

(
ω−k−11 − ω−k−12

) (
i∗t+k − rt+k

)
+

+∞∑
k=0

(
ξM1 ω−k−11 − ξM2 ω−k−12

)
Mt+k −

+∞∑
k=0

(
ξg1ω

−k−1
1 − ξg2ω

−k−1
2

)
gt+k

+

+∞∑
k=0

(
ξϕ1 ω

−k−1
1 − ξϕ2 ω

−k−1
2

)
ϕt+k

}
, (D.4)
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yt = −ϑpt−1 + gt +
Et

β (ω2 − ω1)

{
1

σ

+∞∑
k=0

(
ξ1ω
−k−1
1 − ξ2ω−k−12

) (
i∗t+k − rt+k

)
−

+∞∑
k=0

(
ξ1ξ

M
1 ω−k−11 − ξ2ξM2 ω−k−12

)
Mt+k +

+∞∑
k=0

(
ξ1ξ

g
1ω
−k−1
1 − ξ2ξg2ω

−k−1
2

)
gt+k

−
+∞∑
k=0

(
ξ1ξ

ϕ
1 ω
−k−1
1 − ξ2ξϕ2 ω

−k−1
2

)
ϕt+k

}
, (D.5)

where ϑ ≡ (1− ρ)(1− βρ)/κ+ δmρ and

ξj ≡ β (ωj + ρ− 1) + κδm − 1,

ξMj ≡ δm (ωj − 1) +
1− δmχy
σχi

,

ξgj ≡ (1− δg) (ωj − 1) +
δgχy − χg

σχi
,

ξϕj ≡ δϕ (ωj − 1) +
χϕ − δϕχy

σχi

for j ∈ {1, 2}.
The only parameter that depends on the degree of price stickiness θ in the structural equations (1),

(D.1), and (D.2) is the slope κ of the Phillips curve (D.1). We have limθ→0 κ = +∞ and hence(
−βσ

1− σδm

)
lim
θ→0

[
P (X)

κ

]
= X (X − ωn1 )

for any X ∈ R, where
ωn1 ≡ 1 +

1− δmχy
(1− σδm)χi

> 1,

where in turn the inequality follows from (D.3). Therefore, we get

lim
θ→0

ρ = 0, lim
θ→0

ω1 = ωn1 , and lim
θ→0

ω2 = +∞. (D.6)

Using (D.6) and

(1− ρ) (ω1 − 1) (ω2 − 1) = P (1) =
(1− δmχy)κ

βσχi
,

we also get that

lim
θ→0

κ

ω2
=

βσ

1− σδm
. (D.7)

Using (D.6) and (D.7), we can easily determine the limits of (D.4) and (D.5) as θ → 0:

lim
θ→0

πt = −pt−1 +
1

1− σδm
Et

{
+∞∑
k=0

(ωn1 )
−k−1 {− (i∗t+k − rt+k)+ (ωn1 − 1)Mt+k

−
[
σ (1− δg) (ωn1 − 1) +

δgχy − χg
χi

]
gt+k +

[
σδϕ (ωn1 − 1) +

χϕ − δϕχy
χi

]
ϕt+k

}}
+

σ

1− σδm
[−δmMt + (1− δg) gt − δϕϕt] , (D.8)
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lim
θ→0

yt =
δm

1− σδm
Et

{
+∞∑
k=0

(ωn1 )
−k−1 {

i∗t+k − rt+k − (ωn1 − 1)Mt+k

+

[
σ (1− δg) (ωn1 − 1) +

δgχy − χg
χi

]
gt+k −

[
σδϕ (ωn1 − 1) +

χϕ − δϕχy
χi

]
ϕt+k

}}
+

1

1− σδm
[δmMt + (δg − σδm) gt + δϕϕt] . (D.9)

These limits are �nite, unlike their counterparts in the basic NK model.
We now show that the right-hand sides of (D.8) and (D.9) coincide with the values taken by πt and yt

when prices are perfectly �exible (θ = 0). The �exible-price value of yt is straightforwardly obtained by
setting to zero the last term in the Phillips curve (D.1), which is proportional to (the log-deviation of) �rms'
marginal cost of production:

yt = δmmt + δggt + δϕϕt. (D.10)

Using the IS equation (1), the money-demand equation (D.2), the identity mt = Mt − pt, the exogenous
policy-rate setting imt = i∗t , and the solution for �exible-price output (D.10), we get the following dynamic
equation under �exible prices:

pt = (ωn1 )
−1 Et {pt+1}+

(ωn1 )
−1

1− σδm

{
− (i∗t − rt) +

(
1− δmχy

χi
− σδm

)
Mt + σδmEt {Mt+1}

+

[
χg − δgχy

χi
+ σ (1− δg)

]
gt − σ (1− δg)Et {gt+1}

+

(
χϕ − δϕχy

χi
− σδϕ

)
ϕt + σδϕEt {ϕt+1}

}
.

Iterating this equation forward to +∞ leads to the following value for the price level pt in our model with
banks under �exible prices:

pt =
1

1− σδm
Et

{
+∞∑
k=0

(ωn1 )
−k−1 {− (i∗t+k − rt+k)+ (ωn1 − 1)Mt+k

−
[
σ (1− δg) (ωn1 − 1) +

δgχy − χg
χi

]
gt+k +

[
σδϕ (ωn1 − 1) +

χϕ − δϕχy
χi

]
ϕt+k

}}
+

σ

1− σδm
[−δmMt + (1− δg) gt − δϕϕt] , (D.11)

which implies in turn that the value of πt ≡ pt−pt−1 in our model with banks under �exible prices coincides
with the right-hand side of (D.8). In turn, using (D.10), (D.11), and the identity mt = Mt− pt, we get that
the value of yt in our model with banks under �exible prices coincides with the right-hand side of (D.9).
Thus, our model with banks solves the paradox of �exibility: the limits of πt and yt as θ → 0 are �nite and
coincide with the values of πt and yt when θ = 0.

D.4. Convergence to the Basic NK Model

In a previous version of this paper (Diba and Loisel, 2019), we show that the steady state and reduced
form of our model with banks converge to the steady state and reduced form of the basic NK model, with
the steady-state stock of real reserves m bounded away from zero and in�nity, as the scale parameter of
banking costs γ and the steady-state interest-rate spread 1/β− Im are shrunk to zero at the same speed (as
in the thought experiment of Subsection 4.2).

More speci�cally, we prove this result in three steps. First, we show that the steady-state values of all
endogenous variables in our model with banks converge, as (Im, γ)→ (1/β, 0), to their counterparts in the
corresponding basic NK model − with the exception of the steady-state value of real reserves m, which does
not exist in the basic NK model. Second, we show that m remains bounded away from zero and in�nity
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along the way, provided that (1/β − Im)/γ is itself bounded away from zero and in�nity, i.e. provided that
1/β − Im and γ are shrunk to zero at the same speed. Third, we build on the �rst two steps to show
that the reduced form of our model with banks converges to the reduced form of the basic NK model as
(Im, γ)→ (1/β, 0) with (1/β − Im)/γ bounded away from zero and in�nity.

In essence, making the steady-state IOR rate Im go to the steady-state interest rate on bonds I = 1/β
asymptotically removes the steady-state opportunity cost of holding reserves. Making the banking-cost-
scale parameter γ go to zero asymptotically removes the steady-state marginal banking cost (provided that
m is bounded away from zero) and the steady-state marginal bene�t of holding reserves (even when m is
bounded from above). Imposing that (1/β − Im)/γ be bounded away from zero and in�nity ensures that
the steady-state opportunity cost and marginal bene�t of holding reserves go hand in hand to zero, so that
m is itself bounded away from zero and in�nity. Asymptotically, given that all steady-state costs related to
banking and reserve holding are removed, the steady state and reduced form of the model converge to the
steady state and reduced form of the basic NK model.

It is straightforward to check that we still get this steady-state and reduced-form convergence, this time
with m going to in�nity (asymptotic satiation), as we hold γ constant and shrink only 1/β − Im to zero (as
in the policy experiment of Section 5), provided that two conditions are met. The �rst condition is that the
marginal banking cost should go to zero as the stock of real reserves goes to in�nity (limmt→+∞ Γ`(`t,mt) =
0, where `t denotes real loans and Γ the banking-cost function). The second condition is that banking-
cost elasticities (Γ```/Γ`, Γmmm/Γm, Γ`m`/Γm, and Γ`mm/Γ`) should be bounded from above. These two
conditions are met, in particular, when the banking-cost function Γ is isoelastic, which happens when the
loan-production and banker-labor-disutility functions are themselves isoelastic.

D.5. Defense of the Non-Satiation Assumption

In Diba and Loisel (2020), we present in detail our model with banks and show in particular that this
model can account, in qualitative terms, for three key features of US in�ation during the Great Recession:
no signi�cant de�ation, little in�ation volatility, and no signi�cant in�ation following quantitative-easing
(QE) policies. These results, like our resolution of NK puzzles and paradoxes in the present paper, rest on
the assumption that demand for bank reserves was not fully satiated in the US. For this reason, in Diba
and Loisel (2020), we address in detail two types of arguments that go against our non-satiation view.

First, some observers may make a case for satiation noting that the federal-funds rate and Treasury-
bill (T-bill) returns were below the IOR rate for several years in the aftermath of the crisis. We do not
think this contradicts our claim that reserves still had a positive marginal convenience yield during this
period. Most of the trading activity in the federal-funds market over this period involved banks borrowing
funds from entities that do not have direct access to the IOR rate (particularly from Federal Home Loan
Banks). Given the presence of such eager lenders, the federal-funds rate had to be below the IOR rate to
incentivize the borrowers (banks with direct access to the IOR rate). As to T-bill returns, the low rates could
re�ect strong demand by non-bank entities − using T-bills as, e.g., collateral or international reserve asset.
We formalize this counter-argument in Diba and Loisel (2020) by introducing government bonds providing
liquidity services into our model with banks, and showing that the resulting model reconciles the observed
negative spread between T-bill and IOR rates with our non-satiation assumption.

The second argument making a case for satiation of demand for reserves is the fact that large increases
in reserve balances during the second and third rounds of quantitative easing (QE2 and QE3) had no
apparent e�ect on expected in�ation, as Reis (2016) points out. Our counter-argument is that this evidence
may also be consistent with demand for reserves being close to satiation, rather than fully satiated. More
speci�cally, we show in Diba and Loisel (2020) that in our model with banks, large increases in the money
supply (say, doubling the stock of reserves) can have very small in�ationary e�ects (around twenty basis
points) if the demand for reserves is close to satiation and the monetary expansion is perceived as temporary
(say, balance-sheet normalization is expected to occur in about �ve years). Distinguishing between the two
possibilities (arbitrarily close to satiation versus fully satiated demand) may be di�cult in practice. In
fact, in contrast to Reis's (2016) evidence about expected in�ation, Krishnamurthy and Lustig (2019) �nd
statistically signi�cant e�ects of monetary policy, during QE2 and QE3, on the convenience yield of US
Treasury bills and the foreign-exchange value of the dollar.
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Appendix E: CIA Model

In this appendix, we consider a sticky-price CIA model with leisure serving as the credit good. We show
that the log-linearized reduced form of this model cannot smoothly converge to the log-linearized reduced
form of the basic NK model, neither by gradually removing the monetary friction, nor by gradually satiating
the demand for money. As a result, we cannot use this model to select an equilibrium of the basic NK model
under an exogenous policy rate.

Whenever possible, we use the same notation as with the MIU model in Appendix B. For simplicity, we
abstract from preference, supply, and government-purchases shocks (i.e. ζt = ϕ1,t = ϕ2,t = ϕ3,t = ϕ4,t = 1
and gt = g ≥ 0), as we do not need them to make our point.

In our CIA model, households choose bt, ct, ht, and mt to maximize

Ut = Et

{ ∞∑
k=0

βk [u (ct+k)− v (ht+k)]

}

subject to their budget constraint

bt +mt ≤
It−1
Πt

bt−1 +
Imt−1
Πt

(mt−1 − ct−1) +
wt−1
Πt

ht−1 + τt

and their cash-in-advance constraint
ct ≤ mt,

taking all prices as given. The monetary friction is that households need to use cash to buy goods in the
goods exchange, and they can acquire cash only in the �nancial exchange that takes place before the goods
exchange within the same period. Since all of consumption is subject to the CIA constraint, the model has
no parameter that we can shrink to gradually remove the monetary friction. Therefore, we cannot make the
model converge smoothly to the basic NK model by gradually removing the monetary friction.

In fact, the only parameters of the model that do not exist in the basic NK model are the steady-state
interest rate on money Im and the steady-state gross growth rate of money µ. So, the only possibility for
the model to smoothly converge to the basic NK model would be to gradually shrink the spread between
the steady-state interest rate on money Im and the steady-state interest rate on bonds µ/β, and as a result
gradually satiate the demand for money. In what follows, we show that the steady state of the model would
then smoothly converge to the steady state of the basic NK model, but its reduced form would not smoothly
converge to the reduced form of the basic NK model − essentially because the CIA constraint remains
binding along the way for su�ciently small shocks (since Im remains below µ/β along the way).

To do so, we start by deriving the �rst-order conditions of households' maximization problem (stated
above):

u′(ct) = βImt Et
{
λt+1

Πt+1

}
+ λ̃t,

λt = βImt Et
{
λt+1

Πt+1

}
+ λ̃t,

λt = βItEt
{
λt+1

Πt+1

}
,

v′ (ht) = βwtEt
{
λt+1

Πt+1

}
,

where λt and λ̃t denote the Lagrange multipliers associated with the budget and cash-in-advance constraints
respectively. We then turn to the other equilibrium conditions of the model. Firms are subject to Calvo's
(1983) constraints on the frequency at which they can change their prices. They receive cash from consumers
and hoard it until the next period. Thus, in the speci�c case of perfectly �exible prices (θ = 0), �rm i chooses
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Pt(i) to maximize

Et
{
βλt+1

λtΠt+1

}[
Imt

Pt(i)yt(i)

Pt
− wtht(i)

]
subject to the production function

yt (i) = f [ht (i)]

and the demand schedule

yt (i) =

[
Pt(i)

Pt

]−ε
yt.

Using the Euler equation above, and the symmetry between �rms, we can write the �rst-order condition of
this �exible-price maximization problem as(

ε

ε− 1

)
wt = Imt f

′(ht).

Finally, the bond-market-clearing condition is

bt = 0,

the money-market-clearing condition is

mt =
Mt

Pt
,

and the goods-market-clearing condition is
ct + g = yt.

As with our MIU model, we set µ to one, so that the set of steady states is the same under sticky prices
(θ > 0) as under �exible prices (θ = 0). So, we can use the �rst-order condition of �rms' optimization
problem under �exible prices (above) to characterize this set. When all variables are constant over time (in
particular h ≡ ht = ht+1), the equilibrium conditions above imply

v′(h)

f ′(h)
= βIm

(
ε− 1

ε

)
u′[f(h)− g]. (E.1)

Under standard assumptions on u, v and h, the left-hand side of (E.1) is increasing in h, from 0 (as h = 0)
to +∞ (as h → +∞), while its right-hand side is decreasing in h, from +∞ (as h → h, where h is de�ned
by f(h) = g) to 0 (as h→ +∞). Therefore, there exists a unique solution in h to (E.1), and hence a unique
steady state of the model. As Im gradually goes to 1/β, (E.1) smoothly converges to

v′(h)

f ′(h)
=

(
ε− 1

ε

)
u′[f(h)− g],

which is the equation that the steady-state value of labor h satis�es in the basic NK model. Therefore,
the steady state of our CIA model smoothly converges to the steady state of the basic NK model as Im

gradually goes to 1/β.
Since Im goes to 1/β without ever reaching 1/β, the CIA constraint remains binding along the way (for

su�ciently small shocks). Therefore, log-linearizing the equilibrium conditions around the unique steady
state leads to the following reduced form:

ŷt = Et {ŷt+1} −
1

σ
(it − Et {πt+1}) ,

πt = βEt {πt+1}+ κ [ŷt + δi (it − imt )] ,

ŷt = νm̂t,
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where m̂t = M̂t − P̂t, πt = P̂t − P̂t−1, and all parameters are positive:

σ ≡ −u′′y
u′

> 0,

κ ≡ (1− θ) (1− βθ)

θ
[
1− εff ′′

(f ′)2

] [
−u
′′y

u′
+
v′′h

v′
f

f ′h
− ff ′′

(f ′)
2

]
> 0,

δi ≡

[
−u
′′y

u′
+
v′′h

v′
f

f ′h
− ff ′′

(f ′)
2

]−1
> 0,

ν ≡ c

y
∈ (0, 1).

This reduced form does not converge to the reduced form of the basic NK model as Im gradually goes to
1/β. Thus, the reduced form of our CIA model does not smoothly converge to the reduced form of the basic
NK model.

Appendix F: Discounting Models

�Discounting models� provide an alternative to our approach for solving the forward-guidance puzzle. In
this appendix, we establish three points about a class of discounting models. The �rst two points generalize
Cochrane's (2016) comments on Gabaix (2020). More speci�cally, the �rst point is that discounting models
do not solve our paradox of �exibility (De�nition 3). While we have no evidence against (nor in favor of)
their implication that greater price �exibility magni�es the contraction and the de�ation at the ZLB, we
think that their implication about a discontinuity at the �exible-price limit − highlighted in our De�nition
3 − seems implausible. As we will show, this discontinuity comes from the fact that discounting models do
not deliver determinacy under an exogenous interest rate when prices are �exible.

The second point is that discounting models cannot solve the forward-guidance puzzle without generating
a negative long-term relationship between the in�ation rate and the interest rate on bonds. To our knowledge,
existing empirical evidence does not support the precise one-to-one long-term relationship implied by our
monetary models. Nonetheless, the existence of a positive long-term relationship between the in�ation
rate and nominal interest rates is a standard presumption of our textbooks, and is broadly re�ected in
cross-country data.

Our third point illustrates a limitation of our equilibrium-selection argument in Sections 3-4. Although
discounting models converge to the basic NK model as we shrink the underlying friction, we cannot use them
to uniquely select the equilibrium presented in Subsection 3.2 (nor any other equilibrium). This is because
discounting models do not deliver determinacy under an exogenous interest rate beyond some point, as we
approach the basic-NK-model limit. This illustrates more broadly that our equilibrium-selection argument
must start with a model that has higher-order dynamics than the second-order dynamics of the basic NK
model.

F.1. A Class of Discounting Models

We consider a class of models whose reduced form, in the absence of shocks other than interest-rate
shocks, is made of an IS equation and a Phillips curve of type

yt = ξ1Et {yt+1} −
ξ2
σ
Et {it − πt+1} , (F.1)

πt = βξ3 (θ)Et {πt+1}+ κ (θ) [yt − ξ4 (θ)Et {yt+1}] , (F.2)
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where β ∈ (0, 1), σ > 0, ξ1 > 0, ξ2 > 0, and, for all θ ∈ (0, 1), ξ3(θ) ≥ 0, ξ4(θ) ∈ [0, 1), and κ(θ) > 0, with
limθ→0 ξ3(θ) < +∞ and limθ→0 κ(θ) = +∞.4 This class of reduced forms nests the reduced form of the basic
NK model as a special case in which ξ1 = ξ2 = ξ3(θ) = 1 and ξ4(θ) = 0. More generally, this class allows the
coe�cients of Et{yt+1} and Et{πt+1} to be smaller (�positive discounting�) or larger (�negative discounting�)
than in the basic NK model, and also allows for a Et{yt+1} term in the Phillips curve. In particular, this
class encompasses the reduced forms of three models that have been shown to be able to solve the forward-
guidance puzzle: (i) Gabaix's (2020) benchmark model, in which (ξ1, ξ3(θ)) ∈ (0, 1)2 and ξ4(θ) = 0; (ii)
Angeletos and Lian's (2018) model, in which (ξ1, ξ2, ξ3(θ), ξ4(θ)) ∈ (0, 1)4; and (iii) Bilbiie's (2019) model
with external price-adjustment costs, in which (ξ1, ξ2) ∈ (0, 1)2 and ξ3(θ) = ξ4(θ) = 0. In addition, it also
encompasses the reduced forms of: (iv) Bilbiie's (2019) model with internal price-adjustment costs, in which
(ξ1, ξ2) ∈ (0, 1)2, ξ3(θ) = 1, and ξ4(θ) = 0; (v) McKay et al.'s (2017) model, in which also (ξ1, ξ2) ∈ (0, 1)2,
ξ3(θ) = 1, and ξ4(θ) = 0; (vi) Ravn and Sterk's (2018) model with risk-neutral equity investors, in which
ξ3(θ) = 1 and ξ4(θ) ∈ (0, 1); and (vii) Woodford's (2019) model with exponentially distributed planning
horizons and no learning, in which ξ1 = ξ2 = ξ3(θ) ∈ (0, 1) and ξ4(θ) = 0.5

F.2. Paradox of Flexibility

Like the basic NK model, and unlike our monetary models, discounting models exhibit the paradox of
�exibility (as stated in De�nition 3).6 They make in�ation and output explode in response to future shocks
as the degree of price stickiness θ goes to zero. To establish this result, we assume that the interest rate is
set exogenously from date 1 to some date T ≥ 2, and that the economy is at its steady state at date T + 1;
and we show that the responses of |π1| and |y1| to an interest-rate change at any date k ∈ {2, ..., T} go to
in�nity as θ → 0:

Proposition 10: Discounting models exhibit the paradox of �exibility: if ik = i∗ 6= 0, it = 0 for all
t ∈ {1, ..., T}r {k}, and yT+1 = πT+1 = 0, then limθ→0 |π1| = limθ→0 |y1| = +∞.

Proof: We start with the case in which ξ3(θ) > 0 or ξ4(θ) > 0. In this case, the system made of the IS
equation (F.1) and the Phillips curve (F.2) can be rewritten as

Et
{[

yt+1

πt+1

]}
= P

[
yt
πt

]
+ Zit (F.3)

with

P ≡ 1

ϕ (θ)

[
κ (θ) ξ2 + βσξ3 (θ) −ξ2
κ (θ)σ [ξ4 (θ)− ξ1] σξ1

]
and Z ≡ ξ2

ϕ (θ)

[
βξ3 (θ)

κ (θ) ξ4 (θ)

]
,

where ϕ(θ) ≡ βσξ1ξ3(θ) + κ(θ)ξ2ξ4(θ) > 0. The characteristic polynomial of P is

P (X) ≡ X2 − σξ1 + κ (θ) ξ2 + βσξ3 (θ)

ϕ (θ)
X +

σ

ϕ (θ)
.

Since P(0) 6= 0, P is invertible. Iterating the dynamic equation (F.3) forward to date T , and using the
terminal condition yT+1 = πT+1 = 0 and the invertibility of P, we get[

y1
π1

]
= −P−(k−1)Zi∗.

4We focus on discrete-time discounting models for the sake of comparability with our monetary models, but we have no
reason to expect that continuous-time discounting models behave di�erently. Indeed, Michaillat and Saez (2019) show that
their continuous-time discounting model has the same three properties as the ones listed above.

5However, it does not encompass the reduced forms of McKay et al.'s (2016) and Del Negro et al.'s (2015) models, which
involve some discounting too but are more complex.

6They may attenuate this paradox, though, as Angeletos and Lian (2018) show in the context of their discounting model.
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For any X ∈ R, we have
1

ξ2
lim
θ→0

[
ϕ (θ)P (X)

κ (θ)

]
=

[
lim
θ→0

ξ4 (θ)

]
X2 −X.

One root of the polynomial on the right-hand side of this equation is zero. Therefore, one root of P(X)
converges towards zero as θ → 0, which implies in turn that limθ→0 ||P−1|| = +∞. Using the fact that ||Z||
is bounded away from zero as θ → 0, we conclude that limθ→0 |y1| = limθ→0 |π1| = +∞.

In the alternative case in which ξ3(θ) = ξ4(θ) = 0, the system made of the IS equation (F.1) and the
Phillips curve (F.2) implies the following dynamic equation in in�ation:[

ξ1 +
κ (θ) ξ2
σ

]
Et {πt+1} = πt +

κ (θ) ξ2
σ

it. (F.4)

Iterating this dynamic equation forward to date T , and using the terminal condition πT+1 = 0, we get

π1 = −
[
ξ1 +

κ (θ) ξ2
σ

]k−1
κ (θ) ξ2i

∗

σ
,

so that limθ→0 |π1| = +∞. Using the Phillips curve (F.2) with ξ3(θ) = ξ4(θ) = 0, we then get limθ→0 |y1| =
+∞. �

The preceding proof is based on two properties of discounting models: (i) these models generate inde-
terminacy under a permanently exogenous policy rate when prices are su�ciently �exible, as their dynamic
system then has one stable eigenvalue not matched by any predetermined variable, and (ii) this stable eigen-
value goes to zero as prices are made more and more �exible. As in the basic NK model in Section 2, this
stable eigenvalue magni�es the e�ects of future conditions (at date k) on initial outcomes (at date 1), and
these e�ects grow explosively as this eigenvalue goes to zero − thus giving rise to the paradox of �exibility.

Indeterminacy under su�ciently �exible prices, in turn, follows by continuity from indeterminacy under
perfectly �exible prices. Under perfectly �exible prices, the Phillips curve (F.2) collapses to the dynamic
equation yt = [limθ→0 ξ4(θ)]Et{yt+1}, which pins down yt uniquely if limθ→0 ξ4(θ) 6= 1. Under an exogenous
policy rate it, the IS equation (F.1) then pins down expected future in�ation Et{πt+1}, but not current
in�ation πt. Thus, discounting models may deliver determinacy under a permanently exogenous policy rate
for some degrees of price stickiness, but cannot do it for su�ciently small degrees of price stickiness.

In our monetary models, by contrast, the interest rate pegged at the ZLB is the IOR rate imt , not
the interest rate on bonds it. Setting exogenously the IOR rate and the nominal stock of reserves − two
monetary-policy instruments under the direct control of central banks − makes the (market-determined)
interest rate on bonds evolve according to a shadow Wicksellian rule, as we have explained. This shadow
Wicksellian rule ensures determinacy for any degree of price stickiness, and in particular for perfectly �exible
prices − thus solving the paradox of �exibility.

F.3. Fisher E�ect

Discounting models cannot deliver determinacy under a permanently exogenous policy rate without
making the in�ation rate and the interest rate negatively related to each other in the long term. Therefore,
they cannot both solve the forward-guidance puzzle and imply a long-term relationship consistent in sign
(let alone in size) with the standard Fisher e�ect.7 The following proposition formalizes this point:

Proposition 11: In discounting models, if setting the policy rate exogenously delivers local-equilibrium
determinacy, then a permanent increase in the policy rate leads to a permanent decrease in the in�ation
rate.

7Gabaix (2020), however, adds price indexation and �in�ation guidance� to his benchmark discounting model and shows that
the resulting model (which does not belong to the class of discounting models we consider) can both solve the forward-guidance
puzzle and make in�ation respond positively to the nominal interest rate in the long term.
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Proof: We start with the case in which ξ3(θ) > 0 or ξ4(θ) > 0. In this case, under a permanent peg
it = i∗, the system made of the IS equation (F.1) and the Phillips curve (F.2) can be rewritten as (F.3) with
it = i∗. If the peg ensures local-equilibrium determinacy, then P (X), the characteristic polynomial of P
(derived in Appendix F.2), must have no root inside the unit circle, because the system has no predetermined
variable. In particular, P (X) must have no root inside the real-number interval [0, 1], which requires that
P (0)P (1) > 0, i.e. equivalently

σ (1− ξ1) [1− βξ3 (θ)]− κ (θ) ξ2 [1− ξ4 (θ)] > 0. (F.5)

In the unique local equilibrium, the (constant) in�ation rate is easily obtained as

πt = π∗ ≡ −κ (θ) ξ2 [1− ξ4 (θ)] i∗

σ (1− ξ1) [1− βξ3 (θ)]− κ (θ) ξ2 [1− ξ4 (θ)]
.

Given (F.5), π∗ is negatively related to i∗.
In the alternative case in which ξ3(θ) = ξ4(θ) = 0, under a permanent peg it = i∗, the system made of the

IS equation (F.1) and the Phillips curve (F.2) implies the dynamic equation (F.4) with it = i∗. Therefore,
for the peg to ensure determinacy, we need

σ (1− ξ1)− κ (θ) ξ2 > 0. (F.6)

In the unique local equilibrium, the (constant) in�ation rate is easily obtained as

πt = π∗ ≡ −κ (θ) ξ2i
∗

σ (1− ξ1)− κ (θ) ξ2
.

Given (F.6), π∗ is negatively related to i∗. �

The preceding proof is simple, but mechanical. In what follows, we o�er an interpretation of this result
that involves a shadow interest-rate rule and the Taylor principle. The question (negatively) answered by
Proposition 11 is whether the system made of the modi�ed IS equation (F.1), the modi�ed Phillips curve
(F.2), and the permanent peg it = i∗ can have a unique stationary solution and make in�ation, in this
unique stationary solution, depend positively on i∗. This question will receive exactly the same answer if
that system is replaced by the system made of the standard IS equation (1), the modi�ed Phillips curve
(F.2), and the shadow interest-rate rule

it = ξ2i
∗ + σ (1− ξ1)Et {yt+1}+ (1− ξ2)Et {πt+1} . (F.7)

Indeed, the two systems have exactly the same implications for local-equilibrium determinacy and the
dynamics of in�ation and output (they di�er only in terms of the implied dynamics for it). So consider
the latter system. The Taylor principle (as de�ned by Woodford, 2003, Chapter 4) states that a necessary
condition for local-equilibrium determinacy is that the modi�ed Phillips curve (F.2) and the shadow interest-
rate rule (F.7) should make the interest rate react more than one-to-one to the in�ation rate in the long
term, that is to say

ζ ≡ σ (1− ξ1) [1− βξ3 (θ)]

κ (θ) [1− ξ4 (θ)]
+ (1− ξ2) > 1. (F.8)

In the unique local equilibrium, the (constant) interest rate i and the (constant) in�ation rate π are therefore
linked to each other by the relationship i = ξ2i

∗ + ζπ, where ζ > 1. Now, the standard IS equation (1)
implies that they should be equal to each other: i = π. As a consequence, we get

π =
−ξ2i∗

ζ − 1
.

Thus, the necessary condition for local-equilibrium determinacy (F.8) imposed by the Taylor principle re-
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quires that π be negatively related to i∗.
This con�ict between the Taylor principle and the Fisher e�ect does not arise in our monetary models.

First, the interest rate pegged at the ZLB in these models is the (directly controlled) IOR rate imt , not the
(market-determined) interest rate on bonds it. Under exogenous monetary-policy instruments, the interest
rate on bonds evolves according to a shadow Wicksellian rule that always ensures determinacy. Second, these
models generate the standard Fisher e�ect, i.e. a one-to-one long-term relationship between the in�ation
rate and the interest rate on bonds. Indeed, the money-demand equations (7), (C.3), and (D.2) imply that
a permanent change in nominal-money growth Mt −Mt−1 = δ∗ leads to the same permanent change in
in�ation πt = δ∗. In turn, the IS equations (1) and (C.1) imply that Mt−Mt−1 = πt = δ∗ leads to the same
permanent change in the interest rate on bonds it = δ∗.8

F.4. Convergence to the Basic NK Model

Although discounting models converge to the basic NK model as we shrink the underlying friction
(e.g., the degree of bounded rationality in Gabaix, 2020, information frictions in Angeletos and Lian, 2018,
market incompleteness in Bilbiie, 2019), we cannot use them to uniquely select the equilibrium presented
in Subsection 3.2 (nor any other equilibrium). The reason is that discounting models no longer deliver
determinacy under an exogenous interest rate as they approach the basic NK model:

Proposition 12: Discounting models generate indeterminacy under a permanently exogenous policy rate
when (ξ1, ξ2, ξ3(θ), ξ4(θ)) is su�ciently close to (1, 1, 1, 0).

Proof: We focus on the case in which ξ3(θ) is su�ciently close to 1 for ξ3(θ) > 0. In this case,
the system made of the IS equation (F.1) and the Phillips curve (F.2) can be rewritten as (F.3), and its
characteristic polynomial under a permanently exogenous policy rate is P(X) (as de�ned in Appendix F.2).
It is straightforward to check that as (ξ1, ξ2, ξ3(θ), ξ4(θ)) goes to (1, 1, 1, 0), P(X) converges to Pb(X) for
any X ∈ R, and therefore the two roots of P(X) converge to the two roots ρb ∈ (0, 1) and ωb > 1 of
Pb(X). For (ξ1, ξ2, ξ3(θ), ξ4(θ)) su�ciently close to (1, 1, 1, 0), thus, only one root of P(X) lies outside the
unit circle. With only one eigenvalue outside the unit circle for two non-predetermined variables (Et{yt+1}
and Et{πt+1}), discounting models then generate indeterminacy. �

The basic reason for this result is that the reduced form (F.1)-(F.2) of discounting models involves
in�ation and output, but not the price level, like the reduced form (1)-(2) of the basic NK model. As a
result, under a permanently exogenous policy rate, the characteristic polynomial P(X) of their dynamic
system is of degree two, like the characteristic polynomial Pb(X) of the dynamic equation of the basic NK
model.

The reduced forms of our monetary models, by contrast, involve not only in�ation and output, but also
the price level pt through the real stock of reserves mt = Mt−pt in the money-demand equations (7), (C.3),
and (D.2). As a result, under permanently exogenous monetary-policy instruments, their dynamic equation
cannot be written in terms of in�ation and involve only Et{πt+2}, Et{πt+1}, and πt. Instead, it has to be
written in terms of the price level, and to involve Et{pt+2}, Et{pt+1}, pt, and pt−1. As a consequence, the
characteristic polynomial P(X) of our monetary models' dynamic equation is of degree three.

As our monetary models converge to the basic NK model, the roots ρ, ω1, and ω2 of their characteristic
polynomial converge respectively to ρb ∈ (0, 1), 1, and ωb > 1, where the limit value 1 of ω1 simply re�ects
the identity πt = pt − pt−1. As long as our monetary models do not exactly coincide with the basic NK
model, ω1 remains outside the unit circle. With two eigenvalues outside the unit circle (ω1 and ω2) for two
non-predetermined variables (Et{pt+2} and Et{pt+1}), therefore, our monetary models ensure determinacy
even when they are arbitrarily close to the basic NK model.

Put di�erently, the price-level term in our shadow Wicksellian rules − which directly comes from the
price-level term in the money-demand equations − acts as an error-correction term that makes the price
level stationary and hence determinate in our monetary models. As these models converge to the basic NK

8Under the assumption that non-optimized prices are indexed to steady-state in�ation, the Phillips curves (2), (C.2), and
(D.1) remain valid and residually determine the permanent change in output.
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Figure G.1: E�ect of a policy-rate cut at date t+ k on output at date t
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Note: The �gure displays the e�ect on yt of announcing at date t a one-percentage-point-per-annum cut in imt+k (for
the simple model) or it+k (for the basic NK model), as a function of k ∈ {0, ..., 20}. Parameter values are the same
as for Figure 1 in the main text. More speci�cally, benchmark parameter values are set as in Galí (2008, Chapter 3):
β = 0.99, σ = 1, χy = 1, χi = 4, and κ = λ[(1− θ)(1− βθ)/θ] = 0.13, where λ = 3/4 and θ = θ∗ ≡ 2/3. As θ takes
the values θ∗/2, θ∗/4, θ∗/8, and θ∗/16, κ takes respectively the values 1.00, 3.13, 7.57, and 16.54.

model, the coe�cient of the price level in the shadow Wicksellian rules goes to zero. But as long as our
monetary models do not exactly coincide with the basic NK model, this coe�cient remains positive, and
both stationarity and determinacy of the price level ensue.

Appendix G: Simple Model (Numerical Illustrations)

G.1. Additional Numerical Illustrations under our Benchmark Calibration

In Section 3 of the main text, Figure 1 illustrates numerically the e�ects of forward guidance (i.e.
future policy-rate cuts) on in�ation in our simple model, and compares these e�ects to the implications of
the standard NK equilibrium. In this appendix, we illustrate and discuss the e�ects of forward guidance
on output, and the e�ects of anticipated changes in �scal policy on in�ation and output − both in the
equilibrium of our simple model and in the standard equilibrium of the basic NK model. We continue to
use our benchmark calibration taken from Galí (2008, Chapter 3), which sets θ = 2/3 (corresponding to
�3-quarter price rigidity�); we also report the e�ects of cutting θ in half, step by step, to make prices more
�exible.

Figure G.1 shows the e�ects of forward guidance on output in the two models. As before, our policy
experiment is to cut the policy rate by 25 basis points (one percentage point per annum) in Quarter t+ k,
and we display the e�ects on output in Quarter t (when the rate cut is announced). The right panel in
Figure G.1 replicates the implausible implications of the basic NK model. The left panel shows that our
model does not share these implications. The rate cut has small e�ects on output (less than 0.2 percent of
steady-state output to begin with), and the e�ects die o� quickly as we delay the rate cut. Moreover, these
e�ects decline smoothly as we make prices more �exible; they converge to the �exible-price (θ = 0) e�ects.

To analyze the e�ects of �scal policy, we add government purchases to Galí's calibration. We set the share
of government purchases in output to 0.3 in the steady state. We follow Galí's calibration for the structural
parameters (like the intertemporal elasticity of substitution) and adjust the reduced-form parameters (like
the coe�cient 1/σ on the real interest rate in the IS equation) to re�ect the introduction of government
purchases. Our policy experiment is an increase in government purchases, amounting to one percent of
steady-state output, occurring (only) in Quarter t + k and announced in Quarter t. Figures G.2 and G.3
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Figure G.2: E�ect of government purchases at date t+ k on in�ation at date t
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Note: The �gure displays the e�ect on πt of announcing at date t a one-percent-of-steady-state-output increase in
gt+k, as a function of k ∈ {1, ..., 20}. The steady-state share of government purchases in output is set to 0.3, and
benchmark structural-parameter values are set as in Galí (2008, Chapter 3), implying β = 0.99, σ = 1.43, δg = 0.42,
χy = 1, χi = 4, and κ = λ[(1− θ)(1− βθ)/θ] = 0.15, where λ = 0.86 and θ = θ∗ ≡ 2/3. As θ takes the values θ∗/2,
θ∗/4, θ∗/8, and θ∗/16, κ takes respectively the values 1.15, 3.58, 8.65, and 18.90.

display the e�ects on in�ation and output in Quarter t. Once again, the comparison between the left and
the right panels shows that our model's equilibrium does not share the puzzling implications of the basic
NK model's standard equilibrium: the e�ects of anticipated �scal policy die out as we delay the policy
intervention, and they converge to the �exible-price values as we make prices more and more �exible.

Another notable di�erence between our model's equilibrium and the basic NK model's standard equi-
librium under our benchmark calibration is that anticipated �scal expansions have a contractionary e�ect
on output in our model.9 Several contributions (e.g., Christiano et al., 2011) suggest that anticipated �scal
expansions can have large positive output multipliers at the ZLB according to the basic NK model. The
right-hand panel of Figure G.3 con�rms this implication of the basic NK model. This implication arises
from a feedback loop �rst described in Farhi and Werning (2016). As we explain in Subsection 3.2 of the
main text, this feedback loop works back in time via the IS equation and the Phillips curve: given that
πT+1 = yT+1 = 0, a �scal expansion at date T raises in�ation at date T , which lowers the real interest rate
at date T − 1, which raises output and in�ation at date T − 1, and so on. This feedback loop is also present
in our model, but πT+1 and yT+1 are endogenously determined when the �scal expansion is announced. As
a result, expected future �scal expansions can reduce current output in our model (as is the case under the
calibration we use for Figure G.3). Intuitively, these contractionary e�ects of anticipated �scal expansions
may come from wealth e�ects that also arise in standard Real-Business-Cycle models: consumers realize
that the future �scal expansion reduces their permanent income, and they respond by lowering current
consumption.

The e�ects of anticipated �scal expansions on in�ation may be dominated either by the wealth e�ect we
mention above (which is de�ationary) or by an in�ationary e�ect that we can trace back to staggered price
setting. The latter e�ect arises because the �scal expansion is expected to raise prices in the future, and
this motivates current price setters to set higher prices too. Under our benchmark calibration, the e�ects of
anticipated �scal expansions on in�ation (displayed in the left panel of Figure G.2, for various horizons k
and price-stickiness degrees θ) are small, and mostly negative.

9Our analytical derivations in the main text show that this is always the case when we use our model to go to the basic-
NK-model limit. Figure G.3 makes the point numerically under our benchmark calibration, without taking the model to the
basic-NK-model limit.
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Figure G.3: E�ect of government purchases at date t+ k on output at date t
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Note: The �gure displays the e�ect on yt of announcing at date t a one-percent-of-steady-state-output increase in
gt+k, as a function of k ∈ {1, ..., 20}. Parameter values are the same as for Figure G.2 above.

G.2. Numerical Sensitivity Analysis

The quantitative impressions conveyed by Figure 1 in the main text and Figures G.1-G.3 in the previous
appendix are not particularly sensitive to Galí's (2008, Chapter 3) choices about the parameters of the
basic NK model, nor to his (standard) assumption of a unitary income elasticity of money demand. The
value taken by the interest semi-elasticity of money demand χi, however, does matter for the quantitative
impression conveyed by our results about the e�ects of forward guidance. The value of χi a�ects both the
magnitude and the persistence of the e�ects of future changes in the IOR rate on current in�ation and
output. Our choice of χi = 4, following Galí, represents a middle-of-the-range value compared to estimates
that we could take from the empirical literature on money demand.

Semi-log speci�cations of money demand typically yield small estimates of χi based on US data. The
estimates in Stock and Watson (1993) and Cochrane (2018), for example, suggest semi-elasticities close
to −0.1 on an annual basis.10 Given the quarterly frequency of our model, these estimates correspond
to χi = 0.4 (one order of magnitude smaller than the value we use for Figure 1). By contrast, log-log
speci�cations of money demand, estimated on US or cross-country data, suggest interest elasticities around
−1/4 (e.g., Teles and Zhou, 2005) or −1/3 (e.g., Teles et al., 2016). If we set the opportunity cost of holding
money to one percent per quarter, an elasticity of −1/3 implies χi = 33 (one order of magnitude larger
than the value we use for Figure 1). Figure G.4 shows how the quantitative e�ects of forward guidance on
in�ation vary when we set χi to 0.4 or 33.

The policy experiment and the parameter values (other than the value of χi) used for Figure G.4 are the
same as earlier for Figures 1 and G.1. The right panel in Figure G.4 replicates the implausible implications
of the basic NK model. The left panel shows the results for our simple model with χi = 0.4, and the middle
panel shows the results with χi = 33. The left panel suggests that the in�ationary e�ects of anticipated
IOR-rate cuts are tiny (below 3 basis points to begin with, and dying o� quickly). The middle panel suggests
that forward guidance has a sizable and more persistent e�ect on in�ation (announcing that the IOR rate
will be cut by one percentage point in 20 quarters raises current in�ation by 17 basis points).

Beyond this quantitative di�erence, however, both the left and middle panels of Figure G.4 also illustrate
the analytical results that are the main focus of our paper: the in�ationary e�ects go to zero as we cut the
IOR rate in the more distant future (k → +∞), and they converge to the �exible-price e�ects as we make

10Ball's (2001) estimate of −0.05 is even closer to zero.
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Figure G.4: E�ect of a policy-rate cut at date t+ k on in�ation at date t
for alternative values of χi
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Note: The �gure displays the e�ect on πt of announcing at date t a one-percentage-point-per-annum cut in imt+k (for
the simple model) or it+k (for the basic NK model), as a function of k ∈ {0, ..., 20}. Parameter values (except the
value of χi) are the same as for Figure 1 in the main text and Figure G.1 above.

Figure G.5: E�ect of a policy-rate cut at date t+ k on output at date t
for alternative values of χi
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Note: The �gure displays the e�ect on yt of announcing at date t a one-percentage-point-per-annum cut in imt+k (for
the simple model) or it+k (for the basic NK model), as a function of k ∈ {0, ..., 20}. Parameter values (except the
value of χi) are the same as for Figure 1 in the main text and Figures G.1 and G.4 above.
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prices more �exible (θ → 0). Whatever the calibration, our simple model exhibits neither the forward-
guidance puzzle nor the paradox of �exibility.

Figure G.5 shows the e�ects of forward guidance on output (under the same policy experiment and
parameter values we describe above). Again, the quantitative impressions we get are sensitive to the value
of the semi-elasticity χi. The e�ects are tiny if we set χi = 0.4, but more noteworthy and persistent if we
set χi = 33.

Of course, our simple model is not really suitable for a quantitative assessment of the e�ects that one may
associate with forward-guidance policies. Nonetheless, we suspect that the sensitivity of quantitative results
to the speci�cation of money demand may also be present in richer (larger-scale) models. So, we suspect
that the unsettled state of empirical research on money demand may hinder sharp answers to interesting
policy questions in this context.
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