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This supplementary appendix contains the (standard) algebraic derivations of the two

optimal feasible paths considered in Section 4, which are used in the numerical simulations

(to produce Figures 1 and 2). It also provides the expression of some reduced-form

parameters introduced in Section 5, as functions of the structural parameters, so as to

make the results ready-to-use for any numerical application.

S.1 Optimal Feasible Path in the Basic NK Model

In this subsection, I derive the expression (30) for the timeless-perspective optimal feasible

path P̃ . Given that the timeless-perspective optimal feasible path is de�ned as the limit

of the date-t0 Ramsey-optimal feasible path as t0 → −∞, I start by deriving the date-t0

Ramsey-optimal feasible path. To do so, I follow the undetermined-coe�cients method.

More speci�cally, I write the in�ation rate and output as πt0+k =
∑k

j=0 a
π
j ε

η
t0+k−j +∑k

j=0 b
π
j ε

u
t0+k−j and yt0+k =

∑k
j=0 a

y
jε
η
t0+k−j +

∑k
j=0 b

y
jε
u
t0+k−j for k ≥ 0.1 I look for the

values of the coe�cients aπj , b
π
j , a

y
j , and b

y
j for j ≥ 0 that minimize

Lt0 = Et0
{∑+∞

k=0
βk
[(∑k

j=0
aπj ε

η
t0+k−j +

∑k

j=0
bπj ε

u
t0+k−j

)2
+

λ
(∑k

j=0
ayjε

η
t0+k−j +

∑k

j=0
byjε

u
t0+k−j

)2]}
(S.1)

1To lighten the exposition, I do not consider a deterministic term cπk (respectively c
y
k) in the expression

of πt0+k (respectively yt0+k), because this term is clearly zero on the timeless-perspective optimal feasible
path (limt0→−∞ cπk = limt0→−∞ cyk = 0). Thus, the �date-t0 Ramsey-optimal feasible path� that I
consider is, in fact, the date-t0 Ramsey-optimal feasible path up to a deterministic term.
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subject to the constraints

ay0 − a
y
1 − σ−1aπ1 − 1 = 0, (S.2)

by0 − b
y
1 − σ−1bπ1 = 0, (S.3)

aπj − βaπj+1 − κa
y
j = 0 for j ≥ 0, (S.4)

bπ0 − βbπ1 − κb
y
0 − 1 = 0, (S.5)

bπj − βbπj+1 − κb
y
j − (ρu + θu)ρ

j−1
u = 0 for j ≥ 1. (S.6)

The constraints (S.2)-(S.3) come from the IS equation (26) and the observation set Õt ≡

{εη,t−1, εu,t−1}, which implies that it cannot depend on (εηt , ε
u
t ). The constraints (S.4)-

(S.6) come from the Phillips curve (27). I denote respectively by γa, γb, (δaj )j≥0, δ
b
0, and

(δbj)j≥1 the Lagrange multipliers associated with these constraints.

I start with the determination of the coe�cients aπj and ayj for j ≥ 0. The �rst-order

conditions of the Lagrangian minimization with respect to these coe�cients are

2Vη(1− β)−1aπ0 − δa0 = 0,

2Vη(1− β)−1βaπ1 + σ−1γa − δa1 + βδa0 = 0,

2Vη(1− β)−1βjaπj − δaj + βδaj−1 = 0 for j ≥ 2,

2Vη(1− β)−1λay0 − γa + κδa0 = 0,

2Vη(1− β)−1βλay1 + γa + κδa1 = 0,

2Vη(1− β)−1βjλayj + κδaj = 0 for j ≥ 2,

where Vη denotes the variance of εηt . By getting rid of the Lagrange multipliers, I can

rewrite these �rst-order conditions as

βλay1 + (1 + κσ−1)λay0 + βκaπ1 + (1 + β + κσ−1)κaπ0 = 0, (S.7)

βκaπ2 + βλay2 + βκaπ1 + κλσ−1ay0 + (β + κσ−1)κaπ0 = 0, (S.8)

κaπj + λayj − λa
y
j−1 = 0 for j ≥ 3. (S.9)

The equations (S.4) and (S.9) imply the recurrence equation βλaπj+2−(βλ+κ2+λ)aπj+1+

λaπj = 0 for j ≥ 2. The roots of the corresponding characteristic polynomial are µ

(de�ned in the main text) and µ′ ≡ (2βλ)−1[λ + βλ + κ2 +
√

(λ+ βλ+ κ2)2 − 4βλ2].

Since 0 < µ < 1 and βµ′2 ≥ 1, as can be readily checked, the solution of the recurrence
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equation that minimizes Lt0 is of the form aπj = aπ2µ
j−2 for j ≥ 2. The equation (S.4)

then implies that ayj = (1 − βµ)κ−1aπ2µ
j−2 for j ≥ 2. Coe�cients aπ0 , a

π
1 , a

π
2 , a

y
0, and a

y
1

are then determined by the linear system made of (S.2), (S.4) for j ∈ {0, 1}, (S.7), (S.8),

and ay2 = (1 − βµ)κ−1aπ2 . I thus eventually obtain aπ0 = a0, a
π
1 = a1, a

π
j = a2µ

j−2 for

j ≥ 2, ay0 = κ−1(a0 − βa1), ay1 = κ−1(a1 − βa2), and ayj = (1 − βµ)κ−1a2µ
j−2 for j ≥ 2,

where [ a0 a1 a2 ]T ≡M−1[ 0 0 κ ]T and

M ≡

 (βκ2 + κλσ−1 + κ2 + κ3σ−1 + λ) βκ (κ− λσ−1) −β2λ
(βκ+ κ2σ−1 + λσ−1)κ βκ (κ− λσ−1) β (−βλµ+ κ2 + λ)

1 − (1 + β + κσ−1) β

 .
I now turn to the determination of the coe�cients bπj and byj for j ≥ 0. The �rst-order

conditions of the Lagrangian minimization with respect to these coe�cients are the same

as those with respect to the coe�cients aπj and ayj for j ≥ 0, except that aπj , a
y
j , γa, δ

a
j ,

and Vη should be respectively replaced by bπj , b
y
j , γb, δ

b
j , and Vu, where Vu denotes the

variance of εut . Therefore, by getting rid of the Lagrange multipliers, I can rewrite these

�rst-order conditions as

βλby1 + (1 + κσ−1)λby0 + βκbπ1 + (1 + β + κσ−1)κbπ0 = 0, (S.10)

βκbπ2 + βλby2 + βκbπ1 + κλσ−1by0 + (β + κσ−1)κbπ0 = 0, (S.11)

κbπj + λbyj − λb
y
j−1 = 0 for j ≥ 3, (S.12)

which correspond to (S.7), (S.8), and (S.9) in which aπj and ayj have been respectively

replaced by bπj and byj for all j ≥ 0. The equations (S.6) and (S.12) imply the recurrence

equation βλbπj+2 − (βλ + κ2 + λ)bπj+1 + λbπj = λ(1− ρu)(ρu + θu)ρ
j−1
u for j ≥ 2, which is

identical to the recurrence equation obtained above for (aπj )j≥2 except for the term on

the right-hand side. Therefore, the roots of the corresponding characteristic polynomial

are µ, µ′, and ρu. Given that 0 < µ < 1 and βµ′2 ≥ 1, and given that I focus on the

generic case ρu 6= µ, the solution of the recurrence equation that minimizes Lt0 is of the

form bπj = (bπ2 − b)µj−2 + bρj−2u for j ≥ 2 with b ∈ R. The recurrence equation for j = 2

implies that b = [βλρ2u− (βλ+ κ2 + λ)ρu + λ]−1λ(1− ρu)(ρu + θu)ρu. The equation (S.6)

then implies that byj = (1 − βµ)κ−1(bπ2 − b)µj−2 + [(1 − βρu)b − (ρu + θu)ρu]κ
−1ρj−2u for

j ≥ 2. The coe�cients bπ0 , b
π
1 , b

π
2 , b

y
0, and b

y
1 are then determined by the linear system

made of (S.3), (S.5), (S.6) for j = 1, (S.10), (S.11), and by2 = κ−1[(1 − βµ)bπ2 + β(µ −

ρu)b − (ρu + θu)ρu]. I thus eventually obtain bπ0 = b0, b
π
1 = b1, b

π
j = (b2 − b)µj−2 + bρj−2u
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for j ≥ 2, by0 = κ−1(b0 − βb1 − 1), by1 = κ−1[b1 − βb2 − (ρu + θu)], and byj = (1 −

βµ)κ−1(b2− b)µj−2 + [(1− βρu)b− (ρu + θu)ρu]κ
−1ρj−2u for j ≥ 2, where [ b0 b1 b2 ]T ≡

M−1[λ [1 + β(ρu + θu) + κσ−1] λ [β(ρu + θu)ρu − β2(µ− ρu)b+ κσ−1] 1−(ρu+θu) ]T .

The coe�cients aπj , b
π
j , a

y
j , and b

y
j for j ≥ 0 that I have obtained give me the in�ation rate

and output on the date-t0 Ramsey-optimal feasible path as functions of shocks having

occurred since date t0. By making t0 tend towards −∞, I straightforwardly get these

two variables on the timeless-perspective optimal feasible path as functions of all current

and past shocks:

Zt = TZ
0 εt + TZ

1 εt−1 +
∑+∞

j=2

(
ρj−2u TZ

u + µj−2TZ
µ

)
εt−j, (S.13)

where TZ
0 ≡

[
a0 b0

a0−βa1
κ

b0−βb1−1
κ

]
, TZ

1 ≡
[

a1 b1
a1−βa2

κ
b1−βb2−(ρu+θu)

κ

]
,

TZ
u ≡

[
0 b

0 (1−βρu)b−(ρu+θu)ρu
κ

]
, and TZ

µ ≡
[

a2 b2 − b
(1−βµ)a2

κ
(1−βµ)(b2−b)

κ

]
.

Multiplying the left- and right-hand sides of (S.13) by (1−ρuL)(1−µL) leads to the �rst

two lines of (30) with

TZ(X) ≡ TZ
0 +

[
− (ρu + µ)TZ

0 + TZ
1

]
X +

[
ρuµT

Z
0 − (ρu + µ)TZ

1 + TZ
u + TZ

µ

]
X2

+
[
ρuµT

Z
1 − µTZ

u − ρuTZ
µ

]
X3.

Moreover, rank[TZ(0)] = 2, since rank(TZ
0 ) = 2.

Then, using the IS equation (26) and (S.13), I residually obtain the interest rate on the

timeless-perspective optimal feasible path as a function of all past shocks:

it = Ti
1εt−1 +

∑+∞

j=2

(
ρj−2η Ti

η + ρj−2u Ti
u + µj−2Ti

µ

)
εt−j, (S.14)

where Ti
1 ≡

[
(1+β−βµ+κσ−1)a2−a1+κ(ρη+θη)

κσ−1

(1+β−βµ+κσ−1)b2−b1+β(µ−ρu)b+(ρu+θu)(1−ρu)
κσ−1

]
,

Ti
η ≡

[
(ρη + θη)ρησ 0

]
, Ti

u ≡
[

0 bρu − [(1−βρu)b−(ρu+θu)ρu](1−ρu)σ
κ

]
,

and Ti
µ ≡

[
−(κσ−λ)a2µ

λ
−(κσ−λ)(b2−b)µ

λ

]
.

Multiplying the left- and right-hand sides of (S.14) by (1− ρηL)(1− ρuL)(1− µL) leads

to the last line of (30) with

Ti(X) ≡ Ti
1 +

[
−(ρη + ρu + µ)Ti

1 + Ti
η + Ti

u + Ti
µ

]
X

+
[
(ρηρu + ρηµ+ ρuµ)Ti

1 − (ρu + µ)Ti
η − (ρη + µ)Ti

u − (ρη + ρu)T
i
µ

]
X2

+
[
−ρηρuµTi

1 + ρuµT
i
η + ρηµT

i
u + ρηρuT

i
µ

]
X3.
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Finally, it can be checked that [ 1 0 ]TZ(ρ−1u ) 6= 0, [ 1 0 ]TZ(µ−1) 6= 0, [ 0 1 ]TZ(ρ−1u ) 6=

0, [ 0 1 ]TZ(µ−1) 6= 0, Ti(ρ
−1
η ) 6= 0, Ti(ρ

−1
u ) 6= 0, and Ti(µ

−1) 6= 0, except possibly in

zero-measure cases. Therefore, the ARMA(p, q) representation (30) of the path P̃ is

generically of minimal orders p and q.

S.2 Optimal Feasible Path in Svensson and Woodford's Model

Svensson and Woodford (2005) compute the timeless-perspective optimal feasible path

when CB's observation set is {εη,t−1, εu,t−1}. They provide the following expressions for

Et{πt+1}, Et{yt+1}, and it on this path, as functions of ηt−1 and u
t:2

Et{πt+1} =
ρuµ

1− βρuµ
ut −

(1− µ)ρuµ

1− βρuµ
∑+∞

j=1
µj−1ut−j, (S.15)

Et{yt+1} =
−κρuµ

λ(1− βρuµ)

∑+∞

j=0
µjut−j, (S.16)

it = σρηηt−1 +
(λ− κσ)ρ2uµ

λ(1− βρuµ)
ut−1 −

(λ− κσ)(1− µ)ρuµ

λ(1− βρuµ)

∑+∞

j=1
µj−1ut−j. (S.17)

Using these expressions, the IS equation (38), the Phillips curve (39), and the de�nition

of µ, I easily get πt and yt on this path as functions of εηt and u
t:

πt = ut +

(
ρuµ

1− βρuµ
− ρu

)
ut−1 −

(1− µ)ρuµ

1− βρuµ
∑+∞

j=2
µj−2ut−j, (S.18)

yt = εηt −
κρuµ

λ(1− βρuµ)

∑+∞

j=1
µj−1ut−j. (S.19)

Multiplying the left- and right-hand sides of (S.18) and (S.19) by (1−ρuL)(1−µL) leads

to the �rst two lines of (40), with

TSW
Z (X) ≡

[
0 1 +

(
ρuµ

1−βρuµ − ρu − µ
)
X − βρ2uµ

2

1−βρuµX
2

(1− ρuX)(1− µX) −κρuµ
λ(1−βρuµ)X

]
.

Multiplying the left- and right-hand sides of (S.17) by (1− ρηL)(1− ρuL)(1− µL) leads

to the last line of (40), with

TSW
i (X) ≡

[
σρη(1− ρuX)(1− µX) −(λ−κσ)ρuµ

λ(1−βρuµ) (1− ρηX) (1− ρu − µ+ ρuµX)
]
.

It is easy to check that [ 1 0 ]TSW
Z (ρ−1u ) 6= 0, [ 1 0 ]TSW

Z (µ−1) 6= 0, [ 0 1 ]TSW
Z (ρ−1u ) 6=

0, [ 0 1 ]TSW
Z (µ−1) 6= 0, TSW

i (ρ−1η ) 6= 0, TSW
i (ρ−1u ) 6= 0, and TSW

i (µ−1) 6= 0, ex-

cept possibly in zero-measure cases. Therefore, the ARMA(p, q) representation (40) is

2There are two di�erences between Equations (S.15), (S.16), (S.17) in this supplementary appendix,
and Equations (26), (27), (32) in Svensson and Woodford (2005). First, as mentioned in the main text,
I have set the mean of ηt to zero for simplicity. Second, I have corrected a typo in their Equation (27);
more speci�cally, I have removed the negative sign just after the equality sign in this equation.
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generically of minimal orders p and q. Finally, it is also easy to check that the poly-

nomials (1 − ρηX) det[TSW
Z (X)] and TSW

i (X)adj[TSW
Z (X)] are divisible by D(X) ≡

(1−ρuX)(1−µX), but not by any scalar polynomial of higher degree. Therefore, D(X) is

the greatest common divisor (de�ned up to a non-zero real-number multiplicative factor)

of these two polynomials.

S.3 Some Reduced-Form Parameters

A ≡ 1

α +
(
1 + χ− α

1−τ

)
sc
σ

[A1 A2 ] ,

where

A1 ≡



αsx
δ

−(1−δ)αsx
δ

+ (1− α) (1 + χ) sc
σ

α
δ

+
(
1 + χ− α

1−τ

)
sc
δσ

−(1−δ)
δ

[
α +

(
1 + χ− α

1−τ

)
sc
σ

]
sx
δ

−(1−δ)sx
δ

− (1− α)
[
1− sc

(1−τ)σ

]
−
(
1 + χ− α

1−τ

)
sx
δ

(
1 + χ− α

1−τ

) (1−δ)sx
δ

+ (1− α) (1 + χ)(
1 + ωτ

1−τ

)
αsx
δ

(1−α)(1+χ)ωτsc
(1−τ)σ −

(
1 + ωτ

1−τ

) (1−δ)αsx
δ
− α

[
1 +

(
χ− τ

1−τ

)
sc
σ

]
−
(
1− α

1−τ

)
sx
δ

(
1− α

1−τ

) (1−δ)sx
δ

+ (1− α)
[
1 + χsc

(1−τ)σ

]
−αsx
δ

(1−δ)αsx
δ
− (1− α) (1 + χ) sc

σ


,

A2 ≡



(1 + χ) sc
σ

(
1− sc

ϕσ

)
αsg

0 0

−
[
1− sc

(1−τ)σ

] (
1− sc

ϕσ

)
sg

1 + χ −
(

1 + χ+ α
ϕ
− α

1−τ

)
sg

(1 + χ)
(
1 + ωτ

1−τ

)
sc
σ

(
1− sc

ϕσ

) (
1 + ωτ

1−τ

)
αsg −

[
α +

(
1 + χ− α

1−τ

)
sc
σ

] sgω
ϕ[

1 + χsc
(1−τ)σ

]
−
(

1 + ασ+χsc
ϕσ

− α
1−τ

)
sg

− (1 + χ) sc
σ

[
α +

(
1 + χ− α

1−τ

)
sc
σ

]
(1− τ) sg

ϕτ
−
(

1− sc
ϕσ

)
αsg


,

with sc ≡ 1− sg − sx and ϕ ≡ (1− τ) [α + (1− α)ω];

B ≡ sc
(1 + χ) sc + α (σ − sc)

[B1 B2 ] ,

where

B1 ≡



ασsx
δsc

(1− α) (1 + χ)− (1−δ)ασsx
δsc

1+χ
δ

+ α(σ−sc)
δsc

−(1−δ)
δ

[
1 + χ+ α(σ−sc)

sc

]
σsx
δsc

−(1−α)(σ−sc)
sc

− (1−δ)σsx
δsc

(ασ−sc)σsx
δs2c

(1−α)(1+χ)σ
sc

− (1−δ)(ασ−sc)σsx
δs2c

ασsx
δsc

−α
(
χ+ σ

sc

)
− α(1−δ)σsx

δsc(
χ+ ασ−sc

sc

)
σsx
δsc

(1− α)
(
χ+ σ

sc

)
− (1−δ)σsx

δsc

(
χ+ ασ−sc

sc

)


,
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B2 ≡



−ατ
1−τ 1 + χ ασsg

sc

0 0 0
−τ
1−τ

−(σ−sc)
sc

σsg
sc

−αστ
(1−τ)sc

(1+χ)σ
sc

(ασ−sc)σsg
s2c

−ατ
1−τ −

[
1 + χ+ α(σ−sc)

sc

]
ωτ
1−τ 1 + χ ασsg

sc

−
(
χ+ ασ

sc

)
τ

1−τ χ+ σ
sc

(
χ+ ασ−sc

sc

)
σsg
sc


;

and

Pk (X) ≡
[
B41 −

1− β (1− δ)
σ

B51

]
+

[
B42 −B41 −

1− β (1− δ)
σ

B52

]
X −B42X

2,

Pτ (X) ≡
[
B43 −

1− β (1− δ)
σ

B53

]
−B43X,

Qb (X) ≡ 1− β−1X,

Qk (X) ≡ [α + (1− α)ω] τ (B11 +B12X) ,

Pa ≡ −B44,

Pg ≡ −B45,

Qτ ≡ [α + (1− α)ω] τ (B13 + 1) ,

Qa ≡ [α + (1− α)ω] τB14,

Qg ≡ [α + (1− α)ω] τB15 − sg.
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