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This supplementary appendix contains the (standard) algebraic derivations of the two
optimal feasible paths considered in Section 4, which are used in the numerical simulations
(to produce Figures 1 and 2). It also provides the expression of some reduced-form
parameters introduced in Section 5, as functions of the structural parameters, so as to

make the results ready-to-use for any numerical application.

S.1 Optimal Feasible Path in the Basic NK Model

In this subsection, I derive the expression (30) for the timeless-perspective optimal feasible
path P. Given that the timeless-perspective optimal feasible path is defined as the limit
of the date-t; Ramsey-optimal feasible path as tg — —oo, I start by deriving the date-t,
Ramsey-optimal feasible path. To do so, I follow the undetermined-coefficients method.

More specifically, I write the inflation rate and output as m,4r = Zf 0 ]5t0+k i+

T k
Zj o b7et vy and yror = D5 _galel +Z] _o Vet 1y for k> 0.5 Tlook for the

values of the coefficients a b’r, a , and by for 7 > 0 that minimize

00 2
Lto = Eto {Z:O Bk’ |:<ZJ a” 6t0+k _j + Z ngo-i,-k_j) +
2
A <Zj: ajey iy + Z Ez)-l—k—j) ] } (S.1)

!To lighten the exposition, I do not consider a deterministic term ¢} (respectively c}) in the expression
of Ty, +1 (respectively y:,+x), because this term is clearly zero on the timeless-perspective optimal feasible
path (lim,— oo ¢f = limy, oo cz = 0). Thus, the “date-ty Ramsey-optimal feasible path” that I
consider is, in fact, the date-ty Ramsey-optimal feasible path up to a deterministic term.
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subject to the constraints

aj —aj —otaT —1=0, (S.2)

- b — o7 =0, (S.3)

a; — Baj,, —kaj =0 for j >0, (S.4)

bE — BT — wbY — 1 =0, (.5)

b7 — BbT,, — kY — (pu+ 04)p) 1 =0 for j>1. (S.6)

The constraints (S.2)-(S.3) come from the IS equation (26) and the observation set O, =
{emt=1 gwt=11 " which implies that 4, cannot depend on (g/,£¥). The constraints (S.4)-

(S.6) come from the Phillips curve (27). I denote respectively by va, 7, (0%);0, 66, and

(62);>1 the Lagrange multipliers associated with these constraints.

I start with the determination of the coefficients aj and a? for 7 > 0. The first-order

conditions of the Lagrangian minimization with respect to these coefficients are

2V, (1 = B)'ag — &5 =0,

2V, (1 — B)™'Ba] + o~ 'y, — 07 + 805 = 0,
2V, (1 — B) "' plaT — 64 + Bo%_; =0 for j>2,

2V, (1 = B) " haf — va + KOG =0,

2V,(1 = B8) "' BXaf +7a + K07 =0,

2V, (1= B) '/ Xal + ké§ =0 for j > 2,

where V,, denotes the variance of /. By getting rid of the Lagrange multipliers, I can

rewrite these first-order conditions as

Bat + (1 + ko~ ')Aag + Bra] + (1 + B + ko™ )kag = 0, (8.7)
Braj + BAay + Bral + kAo~ af + (B + ko~ )kaj = 0, (8-8)
Kaj + Aaj — Aaj_; =0 for j >3 (S.9)

The equations (S.4) and (S.9) imply the recurrence equation SAaf,,— (5A+/{2+)\)a§+1 +

Aaj = 0 for j > 2. The roots of the corresponding characteristic polynomial are p

(defined in the main text) and g/ = (28X) 1A + BA + k2 + /(A + BA + k2)2 — 4872,

Since 0 < u < 1 and Bu > 1, as can be readily checked, the solution of the recurrence
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equation that minimizes Ly, is of the form af = azp/~? for j > 2. The equation (S.4)

then implies that af = (1 — Bu)r~'azp’~? for j > 2. Coefficients af, af, a3, af, and af
are then determined by the linear system made of (S.2), (S.4) for j € {0,1}, (S.7), (S.8),

and a = (1 — Bu)x'al. T thus eventually obtain af = ag, af = ay, a7 = a2 for

j
j>2,af =Kk ag — far), af = k™' (ay — Bag), and af = (1 — fu)s~ ag’/~* for j > 2,

where [ag a; ax]T =M70 0 k]T and

(Br? + kAo + K2+ K30+ X)) Br(k— Aot —B%\
M = B+ K20+ X0k Br (k=A™  B(=BAu+ K>+ N)
1 —(1+ B+ ko) B

I now turn to the determination of the coefficients b7 and b?j for j > 0. The first-order
conditions of the Lagrangian minimization with respect to these coefficients are the same
as those with respect to the coefficients aj and a? for j > 0, except that aj, a?, Yar 05,
and V;, should be respectively replaced by 07, b"j, Vb, 5;?, and V,, where V, denotes the
variance of €}'. Therefore, by getting rid of the Lagrange multipliers, I can rewrite these

first-order conditions as

BAB, + (1+ ko™ )ABY + BrbT + (1+ B+ ko' )kb] = 0, (5.10)
BRYS + BAVY + BRUT + kA0 + (8 + Ko™Kl =0, (8.11)
KT + A — AbY_ =0 for j >3, (5.12)

which correspond to (S.7), (S.8), and (S.9) in which a] and af have been respectively
replaced by b7 and b% for all j > 0. The equations (S.6) and (S.12) imply the recurrence
equation ST, 5 — (BX + K> + A)b7,, + AbT = A(1 — pu)(pu + 6u)p) " for j > 2, which is
identical to the recurrence equation obtained above for (af);>2 except for the term on
the right-hand side. Therefore, the roots of the corresponding characteristic polynomial
are p, i/, and p,. Given that 0 < u < 1 and Bu/?> > 1, and given that I focus on the
generic case p, # [, the solution of the recurrence equation that minimizes L, is of the
form bF = (b5 — b)p?~* + bp}? for j > 2 with b € R. The recurrence equation for j = 2
implies that b = [BAp2 — (BA + K> 4+ X)pu + A 7' A(L = pu) (pu + 0u)pu- The equation (S.6)
then implies that b} = (1 — Bu)x~" (b5 — b)/ = + [(1 — Bpu)b — (pu + Ou)pu]s ™ p) > for
J > 2. The coefficients b7, b7, b3, by, and b} are then determined by the linear system
made of (S.3), (S.5), (S.6) for j = 1, (S.10), (S.11), and by = x'[(1 — Bu)bs + B(p —
Pu)b = (pu + 0u)py). T thus eventually obtain bf = bo, b7 = by, b] = (by — b)p? =2 + bp) >
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for j > 2, b = m_l(bo — Bby — 1), b = k7'[by — Bby — (pu + 6u)], and b = (1 —
[( Bpu> (pu + Qu)pu}milpiiz for j > 2, where [bO b bQ]T =
M—I[A [1 (pu + u) + ko ] A [ﬁ(pu + eu)pu - 52(,“ - pu)b + /“7_1] 1_(pu+9u) ]T-

The coefficients af, b7, a , and b?; for 5 > 0 that T have obtained give me the inflation rate
and output on the date-t, Ramsey-optimal feasible path as functions of shocks having
occurred since date ty. By making ¢y tend towards —oo, I straightforwardly get these
two variables on the timeless-perspective optimal feasible path as functions of all current

and past shocks:

Z, = TZe, + Te,_ 1+Z pLATE 4 T ) gy, (S.13)

z_ | o bo z_ a b1
where TO = |: ao—Bar  bo—Bb1—1 } , TT = [ a1—Baz  b1—Bba—(putbu) } ’

K K K K

0 b a by — b
7 7 _ 2 2
T, = { 0 (=800b—(put0.)p. } yand Ty = { (1-Bu)az  (1=pp)(b2=b) } -

K K K

Multiplying the left- and right-hand sides of (S.13) by (1 — p,L)(1 — L) leads to the first
two lines of (30) with

Ty(X) = T§+ [~ (pu+ 1) T + T X + [pup TG = (pu + )TY + T + T7] X?
+ [put T — pT7 — p T/ X°.
Moreover, rank|Tz(0)] = 2, since rank(TZ) = 2.

Then, using the IS equation (26) and (S.13), I residually obtain the interest rate on the

timeless-perspective optimal feasible path as a function of all past shocks:

iy =Tie,_y + Z P + pl T 4 0T ) €y, (S.14)

where Ti = |: (14—5_5#4‘5071>@2—01+I€(pn+9n) (1+ﬁ—ﬂu+fio’71)bg—bl-i-ﬁ(,u—pu)b-f—(pu-i,-gu)(1_pu) :| :

ko1 ko1

K

Tiz = [ (py+0)pyo0 0], T, = [ 0 bp, — (1=Beulb=(butbulou](1=pu)o } ;

i —(ko—A)a —(ko—X)(ba—b)
andT#_[ ek 2 “].

Multiplying the left- and right-hand sides of (S.14) by (1 — p,L)(1 — p,L)(1 — pL) leads
to the last line of (30) with
Ti(X) = T)+ [-(py+pu+p)Ti+T,+ T, +T ] X
+[(Popu + popt+ putt) Ty = (pu + 1) Ty — (py + 1)T5, = (py + pu) T}, ] X
+ [=pnputt T + pupt Ty, + pout Ty, + pppu T} ] X2
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Finally, it can be checked that [1  0]Tz(p,') #0,[1 0]Tz(p™) #0,[0 1]Tz(p,"') #
0, [0 1]Tz(p ") #0, Ti(p,') # 0, Ti(p,") # 0, and T;(u~") # 0, except possibly in
zero-measure cases. Therefore, the ARMA(p, q) representation (30) of the path P is

generically of minimal orders p and q.

S.2 Optimal Feasible Path in Svensson and Woodford’s Model

Svensson and Woodford (2005) compute the timeless-perspective optimal feasible path
when CB’s observation set is {71 =1} They provide the following expressions for

Ei{mi1}, E{yis1}, and 4; on this path, as functions of 7;_; and u':?

U ]_ - u “+00 o
E{mi} = 1 _pﬁ'[; HUt — (1 — g)pp,uu . L lut_j, (S.15)
—Rpull
Ef{yii1} = 1= Bougt) ijo Wy, (S.16)
(A — ko)piap (A = ko) (1 = p)pups i1
= U — i 1
(23 Up"]nt 1 _'_ )\(1 _ /Bpulu> Ut—1 (1 _ /Bpuu Z Ut Vi (S 7)

Using these expressions, the IS equation (38), the Phillips curve (39), and the definition

of u, I easily get m; and y; on this path as functions of &/ and u':

Pult (1= p)pubt ot s
_ Pl Yy — P . S.18
Ty U + <1 — Boupt p )Ut 1 1= Bpupt jzzﬂ Up—j ( )
_ KPult oo g1,
v o= & — M= Bput) E o T (5.19)

Multiplying the left- and right-hand sides of (S.18) and (S.19) by (1 — p,L)(1— L) leads
to the first two lines of (40), with

_Pupt _ Al
T%W(X)z[ 0 U (22— — ) X = £5X ]
_ _ —RKpult
(1 puX)(l IUX) )\(l—ﬁpu,u)X

Multiplying the left- and right-hand sides of (S.17) by (1 — p,L)(1 — p,L)(1 — pL) leads
to the last line of (40), with

TV (X) = [ opy(1 = puX)(1 = pX) S22 (1= p,X) (1= pu— g+ pupiX) |

It is easy to check that [1 0]T3W(p,!) #0, [1 0)T3W (1) #0, [0 1]T3V(p;t) #
0, [0 1TV (") # 0, TV (p, ') # 0, T;W (p,') # 0, and T?W (') # 0, ex-
cept possibly in zero-measure cases. Therefore, the ARMA(p, q) representation (40) is

2There are two differences between Equations (S.15), (S.16), (S.17) in this supplementary appendix,
and Equations (26), (27), (32) in Svensson and Woodford (2005). First, as mentioned in the main text,
I have set the mean of n; to zero for simplicity. Second, I have corrected a typo in their Equation (27);
more specifically, I have removed the negative sign just after the equality sign in this equation.
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generically of minimal orders p and ¢. Finally, it is also easy to check that the poly-
nomials (1 — p,X)det[T3"V(X)] and T{W (X)adj[T5" (X)] are divisible by D(X) =
(1—puX)(1—pX), but not by any scalar polynomial of higher degree. Therefore, D(X) is
the greatest common divisor (defined up to a non-zero real-number multiplicative factor)

of these two polynomials.

S.3 Some Reduced-Form Parameters

1
A = [Al AQ],
o (- 2
where
' 5 _51_30—% Hl-o)(1+
« o] Sc 1 Sc
S+ A+x—1%) 5 la+ (T+x—1%) %]
Sz _(1 6) Sc
i 5 - (1 - CY) []‘ T =)o
A= —(I+x—2) (14 x—12) &= (1 —a) (14 )
wT Sz 1—a)(1+x)wTse wT 1-0)asy T Se
(1+427) o5 Umaderse (14 o) B9 o [14+ (v — %5) %]
a Sz o (1—=6)sa Se
-(-29)% (1—52) 2=+ (1 —a) [1+ 725
| = Usoss — (1— ) (14 ) %
(14x) %= ( _E>a59
0 0
[1 = } (1 - Sfy) Sg
A, = 1+ ~(1Hxre-n)s, 7
(0 (+2) 5 (1= %) (14 25) sy — [+ (1 x - 12) 2] %2
1+ s ] (1 s,
—(14+x) %= [a+(1+x—&)%](1—7)%—< —%)asg
withs,=1—-s;,—s, and o= (1 —7)[a+ (1 — a)w];
B= e (B, B.]
T (4 )seta(c—s) ot TR
where
[ e (1— @) (1+ y) — Uhlooe ]
1+ a(o—sc) —(1-9) oz(U Sc)
S =5 [Ltx+
TSa —(1-a)(o—sc)  (1- é)asx
08¢ s 0S¢
B, = (ao—8c)0Ss (1—&)(1-}—){30’ (=) (ao—sc)oss y
552 Se 552
e —a (X - 2) — ol
] <X+ acrscsc> % (1 . a) <X+ ;T_C) o (1*6?;% <X+ aoszsc> |
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0
=
B = (1—7)se
R I R
| )=
1—-p5(1—-96
P (X) = {341 - #Bm} " {342 -
1-8(1—-
P (X) = [343 - yﬂ'ﬁ} — By X,
Q(X)=1-587"X,
Qk‘ (X) = [Oé+ (1 — O{)W]’T(Bll +BlzX) s
P, = — By,
Pg == _B457
Q-=la+(1—-a)wT(Biz+1),
QaE [a—i—(l—a)w]TBM,
Qy=[a+ (1 —a)w]TB15 — 54

1+x o
0 0
—(o—s¢) 0Sg
(4500 (ao—5o)osy :
Sc s% ’
1+ x =
e (o) 2

1— 1—-9
Bu — LBW} X — BpX?,

g
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